math in primary school

Numbers and Place Value

What is the difference between a ‘numeral’ and a ‘number’?

A numeral is the symbol, or collection of symbols, that we use to represent a number. The
number is the concept represented by the numeral, and therefore consists of a whole network
of connections between symbols, pictures, language and real-life situations.

The same number (for example, the one we call ‘three hundred and sixty-six’) can be represented by different numerals – such as 366 in our Hindu-Arabic, place-value system, and CCCLXVI using
Roman numerals

Because the Hindu-Arabic system of numeration is now more or less universal, the distinction between the numeral and the number is easily lost.

What are the cardinal and ordinal aspects of number?

cardinal基数;
a number, such as 1, 2 and 3, used to show quantity rather than order

ordinal序数词(如第一、第二等)
a number that refers to the position of sth in a series, for example ‘first’, ‘second’, etc.

s an adjective describing a small set
of objects: two brothers, three sweets, five fingers, three blocks, and so on. This idea of a number
being a description of a set of things is called the cardinal aspect of number.

numbers used
as labels to put things in order. For example, they
turn to page 3 in a book.
The numerals and words being used here do not represent
cardinal numbers, because they are not referring to sets of three things.In these examples, ‘three’ is one thing, which is labelled three because of the
position in which it lies in some ordering process. This is called the ordinal aspect of number.

The most important experience of the ordinal aspect of number is when
we represent numbers as locations on a number strip or as points on
a number line

Alt text

There is a further way in which numerals are used,
sometimes called the nominal aspect. This is where
the numeral is used as a label or a name, without any
ordering implied. The usual example to give here
would be a number 7 bus.

What are natural numbers and integers?

use for
counting: {1, 2, 3, 4, 5, 6, …}, going on forever.
These are what mathematicians choose to call the set
of natural numbers

the set of integers: {…, –5, –4, –3, –2, –1, 0, 1,
2, 3, 4, 5, …} now going on forever in both directions.
includes both positive integers (whole numbers greater than zero) and negative integers (whole
numbers less than zero), and zero itself.

The integer –4 is properly named ‘negative four’,
the integer +4 is named ‘positive four’,

natural numbers are positive integers.

Alt text

What are rational and real numbers?

include fractions and decimal
numbers (which, as we shall see, are a particular kind of(是一种特殊的) fraction), we get the set of
rational numbers.

The term ‘rational’ derives from the idea that a fraction represents a ratio.

The technical
definition of a rational number is any number that is the ratio of two integers.

Rational numbers enable us to subdivide the
sections of the number line between the integers and to label the points in between,

Alt text


there are other real numbers that cannot be written down as exact fractions or decimals – and are therefore not rational.

there is no fraction or decimal that is exactly equal to the square root of 50 (written as √50).
This means there is no rational number that when multiplied by itself gives exactly the answer
50.

– we could never get a number
that gave us 50 exactly when we squared it.

But √50 is a real number – in the sense that it
represents a real point on a continuous number line, somewhere between 7 and 8. It represents
a real length. So this is a real length, a real number, but
it is not a rational number. It is called an irrational number.
利用勾股定理得到平方根数的实际长度

the
set of real numbers includes all rational numbers – which include integers, which in turn
include natural numbers – and all irrational numbers.

What is meant by ‘place value’?

in the Hindu-Arabic system
we do not use a symbol representing a hundred to
construct three hundreds: we use a symbol representing three! Just this one symbol is needed to represent
three hundreds, and we know that it represents three
hundreds, rather than three tens or three ones, because
of the place in which it is written.

in our Hindu-Arabic place-value system, all
numbers can be represented using a finite set of digits,
namely, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Like most numeration systems, no doubt because of the availability of
our ten fingers for counting purposes, the system uses
ten as a base.

Larger whole numbers than 9 are constructed using powers of the base: ten, a hundred, a
thousand, and so on.

The place in which a digit is written, then, represents that number of one of these powers
of ten

for example, working from right to left, in the numeral 2345 the 5 represents
5 ones (or units), the 4 represents 4 tens, the 3 represents 3 hundreds and the 2 represents
2 thousands.

the
numeral 2345 is essentially a clever piece of shorthand, condensing a complicated mathematical
expression into four symbols, as follows:
(2 × 103) + (3 × 102) + (4 × 101) + 5 = 2345.

Perversely, we work from right to left in determining the place values, with
increasing powers of ten as we move in this direction. But, since we read from left to right,
the numeral is read with the largest place value first


the principle of exchange.
This means that whenever you have accumulated ten in one place, this can be exchanged for
one in the next place to the left. This principle of being able to ‘exchange one of these for ten
of those’ as you move left to right along the powers of ten, or to ‘exchange ten of these for one
of those’ as you move right to left, is a very significant feature of the place-value system.

This principle of exchanging is also fundamental to the ways we do calculations with
numbers. It is the principle of ‘carrying one’ in addition

It also means that,
when necessary, we can exchange one in any place for ten in the next place on the right, for
example when doing subtraction by decomposition.

It also means that,
when necessary, we can exchange one in any place for ten in the next place on the right, for
example when doing subtraction by decomposition

How does the number line support understanding of place value?

Alt text

What is meant by saying that zero is a place holder?

‘three hundred and seven’ represented in base-ten blocks. Translated into symbols,
without the use of a zero, this would easily be confused with thirty-seven: 37. The zero is used therefore as a place holder; that is, to indicate the position
of the tens’ place, even though there are no tens
there: 307. It is worth noting, therefore, that when we
see a numeral such as 300, we should not think to
ourselves that the 00 means ‘hundred’.It is the position of the 3 that indicates that it stands for ‘three hundred’; the function of the zeros is to make this
position clear whilst indicating that there are no tens
and no ones.

Alt text

How is understanding of place value used in ordering numbers?

It
is always the first digit in a numeral that is most significant in determining the size of the number.

A statement that one number is greater than another (for example, 25 is greater than 16) or
less than another (for example, 16 is less than 25) is called an inequality

How are numbers rounded to the nearest 10 or the nearest 100?

Rounding is an important skill in handling numbers
One skill to be learnt is to round a number or quantity to the nearest something.

round a 2-digit number to the nearest ten.

67 lies between 60 and 70, but is nearer to 70

Alt text

Addition and Subtraction Structures

What are the different kinds of situation that primary children might encounter to which the operation of addition can be connected?

modelling process: setting up the
mathematical model corresponding to a given situation.

There are two basic categories of real-life problems that are modelled by the mathematical
operation we call addition.

• the aggregation structure;
• the augmentation structure.

aggregation聚合;
the act of gathering something together

augmentation增加;
the amount by which something increases

What is the aggregation structure of addition?

aggregation to refer to a situation in which
two (or more) quantities are combined into a single quantity and the operation of addition is used to determine the
total.

t the two sets do not overlap.
They are called discrete sets. When two sets are combined into one set, they form what is called the union of sets.So another way of describing this addition structure
is ‘the union of two discrete sets’.

This notion of addition
builds mainly on the cardinal aspect of number, the idea
of number as a set of things

Alt text

What are some of the contexts in which children will meet addition in the aggregation structure?

whenever they are putting together two
sets of objects into a single set, to find the total
number;

in the context of money.
finding the total cost of two
or more purchases, or the total bill for a number of
services

any measurement context:
n finding the total volume
of water in two containers

What is the augmentation structure of addition?

augmentation to refer to a situation where a quantity is increased by some amount
and the operation of addition is required in order to find the augmented or increased value.

Alt text

What are some of the contexts in which children will meet addition in the augmentation structure?

that of money:
particularly the idea of increases in price or cost, wage or salary.

temperature
an increase in temperature from a given starting temperature.

their age:

in other measurement contexts,

The key language that signals the operation of
addition is that of ‘increasing’ or ‘counting on’.

What is the commutative law of addition?

Which set is on the left and which on the right makes no difference to the total number of marbles. The fact that these two additions come to the same result is an example of what
is called the commutative law of addition.

We can state this commutative law formally by the following generalization, which is true whatever the
numbers a and b: a + b = b + a.

commutative交换的(排列次序不影响结果)
giving the same result whatever the order in which the quantities are shown

Second, it
is important to make use of commutativity in
addition calculations. Particularly when using the
idea of counting on, it is nearly always better to
start with the bigger number.

For example, it
would not be sensible to calculate 3 + 59 by starting at 3 and counting on 59! The obvious thing to do is to use the commutative law
mentally to change the addition to 59 + 3, then start at 59 and count on 3.

subtraction does not have this commutative property

What are the different kinds of situation that primary children might encounter to which the operation of subtraction can be connected?

• the partitioning structure;
• the reduction structure;
• the comparison structure;
• the inverse-of-addition structure.

What is the partitioning structure of subtraction?

The partitioning structure refers to a situation in which a quantity is partitioned off in some
way or other and subtraction is required to calculate how many or how much remains.

Alt text

What are some of the contexts in which children will meet the partitioning subtraction structure?

Partitioning occurs in any practical situation where we ask how many are left, or how much is
left.

It also includes situations
where a subset is identified as possessing some particular attribute and the question asked is,
‘how many are not?’ or ‘how many do not?’

money and shopping.

What is the reduction structure of subtraction?

The reduction structure is similar to ‘take away’ but
it is associated with different language. It is simply
the reverse process of the augmentation structure of
addition. It refers to a situation in which a quantity is
reduced by some amount and the operation of subtraction is required to find the reduced value.

Alt text

The essential components of this structure are a starting point and a
reduction or an amount to go down by.Because of this connection,
the idea of subtraction as reduction builds on the ordinal aspect of number.

What are some of the contexts in which children will meet subtraction in the reduction structure?

Realistic examples of the reduction structure mainly
occur in the context of money.

The key idea which
signals the operation of subtraction is that of ‘reducing’,

What is the comparison structure of subtraction?

The comparison structure refers to a completely different set of situations, namely those
where subtraction is required to make a comparison between two quantities, as for example
in Figure 7.5. How many more blue cubes are there than red cubes?

Subtraction of the smaller
number from the greater enables us to determine the difference, or to find out how much
greater or how much smaller one quantity is than the other.

Alt text

Comparison can build on both the cardinal aspect of
number (comparing the numbers of objects in two
sets) and the ordinal aspect (finding the gap between
two numbers on a number line).

What are some of the contexts in which children will meet subtraction in the comparison structure?

Wherever two numbers occur, we will often find ourselves wanting to compare them. The
first step in this is to decide which is the larger and which is the smaller and to articulate this
using the appropriate language.

articulate清楚说明
to express or explain your thoughts or feelings clearly in words

The next stage of comparison is then to go on to
ask: how many more? How many fewer? How much
greater? How much less? How much heavier? How
much lighter? How much longer? How much shorter?
And so on. Answering these questions is where subtraction is involved.

What is the inverse-of-addition structure of subtraction?

The inverse-of-addition structure refers to situations where we have to determine what must
be added to a given quantity in order to reach some target.

The phrase ‘inverse of addition
underlines the idea that subtraction and addition are inverse processes.The concept of inverse turns up in many situations in mathematics,
whenever one operation or transformation undoes
the effect of another one.

Hence, to solve a
problem of the form ‘what must be added to x to give
y?’ we subtract x from y

Alt text

What are some of the contexts in which children will meet subtraction in the inverse-of-addition structure?

any situation where we have a number of objects or a number of individuals and we require
some more in order to reach a target.

Mental Strategies for Addition and Subtraction

What is the associative law of addition?

the associative law of addition is a fundamental property of addition and an axiom of arithmetic. Written formally, as a generalization, it is the assertion that for any numbers a, b and c:
a + (b + c) = (a + b) + c.

The brackets
indicate which addition should be done first. In simple terms, the associative law says that if
you have three numbers to add together you get the same answer, whether you start by adding
the second and third or start by adding the first and second.

subtraction does not have this property.

How important is mental calculation?

Vertical layouts for additions and subtractions
especially lead children to treat the digits in the numbers as though they are individual numbers and then to
combine them in all kinds of bizarre and meaningless
ways

Mental strategies by their very ad hoc nature
lead you to build on what you understand and to use
methods that make sense to you.

ad hoc临时安排的;特别的;专门的
arranged or happening when necessary and not planned in advance

How does counting forwards and backwards help in mental calculations?

Alt text

How do we use multiples of 10 and 100 as stepping stones?

Notice what happens when we add 5 to 57 on a hundred square. We have to break the 5 down
into two bits, 3 and 2. The 3 gets us to the next multiple of 10 (60) and then we have 2 more
to count on. This process of using a multiple of ten (60) as a stepping stone is an important
mental strategy for addition and subtraction. Some writers refer to this process as ‘bridging’.

Here is how we might use this idea of a stepping
stone for calculating, say, 57 + 28. First, we could
count on in 10s, to deal with adding the 20: 57 … 67,
77. Then break the 8 up into 3 and 5, to enable us to
use 80 as a stepping stone: 77 + 8 = 77 + 3 + 5 =
80 + 5 = 85.

A number-line diagram is a very useful image for
supporting this kind of reasoning. Children can be
taught to use an empty number line, which is simply a line on which they can put whatever numbers
they like, not worrying about the scale, just ensuring
that numbers are in the right order relative to each other.

Alt text

Alt text

What is front-end addition and subtraction?

Most formal written algorithms for addition and subtraction work with the digits from right
to left, starting with the units. In mental calculations, it is much more common to work from
left to right. This makes more sense, because you deal with the biggest and most significant
bits of the numbers first.

One strategy is to mentally break the numbers up into hundreds, tens
and ones, and then to combine them bit by bit, starting at the front end – that is, starting by
adding (or subtracting) the hundreds.This process is sometimes called
partitioning into hundreds, tens and ones.

So, for example, given 459 + 347, we would think of
the 459 as (400 + 50 + 9) and the 347 as (300 + 40 + 7).

The front-end approach would deal with
the hundreds first (400 + 300 = 700), then the tens
(50 + 40 = 90, making 790 so far) and then the ones
(for example, 790 + 9 = 799; followed by 799 + 7 =
799 + 1 + 6 = 806). Notice that I have used 800 as a
stepping stone for the last step here.

459 + 347 = (400 + 50 + 9) + (300 + 40 + 7)
= (400 + 300) + (50 + 40) + (9 + 7)
= 700 + 90 + 9 + 7
= 799 + 7 = 799 + 1 + 6 = 800 + 6 = 806.

What is compensation in addition and subtraction?

You can often convert an addition or subtraction question into an easier question by temporarily adding or subtracting an appropriate small number.

For example, many people would
evaluate 673 + 99 by adding 1 temporarily to the 99, so the question becomes 673 + 100.
This gives 773. Now take off the extra 1, to get the answer 772. This strategy is sometimes
called compensation.

The trick in the strategy is always to be on the lookout for an easier calculation than the
one you have to do. This will often involve temporarily replacing a number ending in a 9 or
an 8 with the next multiple of 10.

Alt text

There are other ways of using the strategy of compensation, all of which amount to changing one or
more of the numbers in order to produce an easier
calculation.

How should the symbol for ‘equals’ be used in recording calculations?

There is a tendency for children (and some
teachers) to abuse the equals sign by employing it rather casually just to link the steps in a
calculation, without it having any real meaning.

How do multiples of 5 help in mental additions and subtractions?

Multiples of 5 (5, 10, 15, 20, 25, 30, …) are particularly easy to work with.

We can exploit this confidence with multiples
of 5 in many additions and subtractions done mentally.

37 + 26 = (35 + 25) + 2 + 1 = 60 + 2 + 1 = 63
77 + 24 = (75 + 25) + 2 – 1 = 100 + 2 – 1 = 101
174 – 46 = (175 – 45) – 1 – 1 = 130 – 1 – 1 = 128

How do you relate additions and subtractions to doubles?

Sometimes in additions and subtractions we can
exploit the fact that most people are fairly confident
with the processes of doubling and halving.

So it is found that young children will often exploit
their facility with doubles to calculate ‘near-doubles’.

48 + 46 could be related to double 46: 46 + 46 = 92, so 48 + 46 = 92 + 2 = 94.
62 + 59 could be related to double 60: 60 + 60 = 120, so 62 + 59 = 120 + 2 – 1 = 121.
54 – 28 could be related to half 54 (27): 54 – 27 = 27, so 54 – 28 = 27 – 1 = 26.
54 – 28 could be related to half 56 (28): 56 – 28 = 28, so 54 – 28 = 28 – 2 = 26.

How do you use ‘friendly’ numbers?

We
always have as an option in addition and subtraction to
use the compensation approach and temporarily
replace one of the numbers in a calculation with one
that is ‘more friendly’.

To calculate 742 – 146
Change the 146 to 142: 742 – 142 = 600
Now compensate: 742 – 146 = 600 – 4 = 596
Or,
Change the 742 to 746: 746 – 146 = 600
Now compensate: 742 – 146 = 600 – 4 = 596

compesate弥补
to provide sth good to balance or reduce the bad effects of damage, loss, etc.

How are mental methods used in estimations?

Confidence in handling mental calculations for addition and subtraction and a facility in
rounding numbers to the nearest 10, 100, 1000, or higher power of ten (see Chapter 6) are
prerequisites for being able to make reasonable estimates for the answer that should be
expected from an addition or a subtraction
.

In everyday life, we often require no more than
an approximate indication of what the result should be for many of the calculations we
engage with – particularly since, in practice, difficult calculations will usually be done on a
piece of technology where the likeliest error is that we enter the numbers incorrectly.

It is also
particularly important to have some rough idea of what size of answer should be expected
when using written calculation methods (see Chapter 9), where a small slip in applying a
procedure might produce a huge error.

(a) if two numbers are
rounded up to estimate their sum then the result will
be an over-estimate;
(b) if two numbers are rounded
down to estimate their sum then the result will be an
under-estimate.

for subtraction: (a) if the first number
in a subtraction is rounded up and the second number
rounded down then the result will be an over-estimate;
(b) if the first number in a subtraction is rounded down and the second number rounded up
then the result will be an under-estimate.

Written Methods for Addition and Subtraction

How might children be introduced to column addition?

for additions with numbers containing three or more digits we need to use
a written method of column addition: this is a way of laying out an addition calculation that
lines up the hundreds, tens and ones in columns. partitioning the numbers into hundreds, tens and ones.

The major source of error in using this format is that it encourages children
to think of the digits as separate numbers, losing any sense that they represent hundreds, tens
or ones.

Alt text

How do you explain what’s going on when you ‘carry one’ in addition?

Alt text

Alt text

Alt text

ten in one column can be exchanged for one in the
next column to the left.

When there are more than
two numbers being added, as in Figure 9.6(b), note
that it is possible to get more than one ten in the total
for a column, so we may need to carry two, as in this
example, or more.

Alt text

What about introducing column subtraction?

Subtractions are straightforward when each digit in the first number is greater than the corresponding digit in the second.
The problem comes when one (or more) of the digits
in the first number is smaller than the corresponding digit in the second number

standard written procedure for column subtraction, lining up the
hundreds, tens and ones in columns.

decomposition, which is the procedure introduced
in Figure 9.7(b) and set out in the traditional format in Figure 9.7(d).

Alt text

equal additions.

So how does subtraction by decomposition work?

Alt text

Alt text

Alt text

Alt text

Alt text

There are three important points to note about the
method of decomposition. First, there is the quite
natural idea of exchanging a block in one column for
ten in the next column to the right when necessary.
Second, there is the strong connection between the
manipulation of the materials and the recording in
symbols, supported by appropriate language. Third,
notice that all the action in the recording takes place in
the top line, that is, in the number you are working on,
not the number you are subtracting.

How does the method of equal additions differ from decomposition?

Alt text

The method is based on the comparison structure of subtraction. and uses
the principle that the difference between two numbers remains the same if you add the same
number to each one.

What is ‘borrowing’ in subtraction?

We are not ‘borrowing one’ in decomposition, we are ‘exchanging one of these for ten of those’.

What is the problem in decomposition with a zero in the top number?

Alt text

What is the constant difference method?

constant difference method, because as we change the subtraction into easier subtractions, we keep the difference
between the numbers constant.

The problem is 802 – 247
Add 3 to both numbers: 805 – 250 (that makes it easier)
Add 50 to both numbers: 855 – 300 (that makes it really easy!)
So the answer is 555.

How is addition used to check a subtraction calculation?

Because subtraction is the inverse of addition, as was explained in Chapter 7, a subtraction
calculation can always be checked by doing an addition. In general, if a – b = c, then c + b = a

Alt text

Multiplication and Division Structures

What are the different kinds of situation to which the operation of multiplication applies?

two categories of situation
that have a structure that corresponds to the mathematical operation represented by the symbol for
multiplication.

• the repeated aggregation structure;
• the scaling structure.

What is the repeated aggregation structure for multiplication?

Repeated aggregation (or repeated addition) is the elementary idea that multiplication
means ‘so many sets of’ or ‘so many lots of’.This structure is simply an extension of the aggregation structure of addition

Alt text

What is the scaling structure for multiplication?

The scaling structure is a rather more difficult idea.
It is an extension of the augmentation structure of
addition. In that structure, addition means increasing
a quantity by a certain amount. With multiplication,
we also increase a quantity, but we increase it by a
scale factor.

Alt text

I’m not sure whether 3 × 5 means ‘3 sets of 5’ or ‘5 sets of 3’

Alt text
the commutative law of
multiplication. This refers to the fact that when you are multiplying two numbers together,
the order in which you write them down does not
make any difference.

We recognize this commutative property formally by the
following generalization, which is true whatever the
numbers a and b: b × a = a × b.

division does nothave this property

Grasping
the principle of commutativity also cuts down significantly the number of different results
we have to memorize from the multiplication tables:

Is there a picture that can usefully be connected with the multiplication symbol?

rectangular array

Alt text

This picture really does make the commutative property
transparently obvious.

Apart from ‘so many sets of so many’, are there other contexts in which children meet multiplication in the repeated aggregation structure?

The repeated aggregation structure of multiplication
applies to what are sometimes referred to as ‘correspondence problems’, in which n objects are connected to each of m objects.

For example, if each of
28 children in a class requires 6 exercise books, then
the total number of exercise books required is
28 × 6.

the number or quantity being multiplied is sometimes called the multiplicand and the number it is being multiplied by is called the multiplier. For example, in ‘Spinach costs 65p a bag, how much for 3 bags?’ the 65 is the multiplicand and the 3 is the multiplier.

What are some of the contexts in which children will meet multiplication in the scaling structure?

Most obviously, this structure is associated with scale models and scale drawings.

This is also the multiplication structure that lies behind the idea of a pro rata increase.

For example, if we all get a 13% increase in our salary, then all our salaries get multiplied by the
same scale factor, namely 1.13

Then we also sometimes use this multiplication structure to express a comparison between
two numbers or amounts, where we make statements using phrases such as ‘so many times
as much (or as many)’ or ‘so many times bigger (longer, heavier, and so on)’.

What are the different kinds of situation to which the operation of division applies?

• the equal-sharing-between structure;
• the inverse-of-multiplication structure;
• the ratio structure.

What is the equal-sharing-between structure for division?

The equal-sharing-between structure refers to a situation in which a quantity is shared out equally into a given
number of portions and we are asked to determine how
many or how much there is in each portion.

Alt text

What is the inverse-of-multiplication structure for division?

The actual problems that occur in practice which have this inverse-of-multiplication structure can be further subdivided.

First, there are problems that incorporate the notion of
repeated subtraction from a given quantity, such as ‘how many sets of 4 can I get from a
set of 20?’

Second, there are those problems that incorporate the idea of repeated addition to reach
a target, such as ‘how many sets of 4 do you need to get a set of 20?

What is the ratio structure for division?

The ratio structure for division refers to situations where we use division to compare two
quantities.

For
example, if A earns £300 a week and B earns £900 a week,we could also compare A’s and B’s
earnings by looking at their ratio, stating, for example, that B earns three times more than A.

What about remainders?

The mathematical model is ‘32 ÷ 6 = 5,
remainder 2’. This means that sharing 32 equally into 6 groups gives 5 in each group, with 2
remaining not in a group

Remainders do not occur where division is used to model situations with the ratio structure.

What are some of the contexts in which children will meet division in the equal-sharing-between structure?

First, the set must be shared into
equal subsets. Second, it is
important to note that the language is sharing
between rather than sharing with.

What are some of the contexts in which children will meet division in the inverse-of-multiplication structure?

How many of these can I afford? This kind of question incorporates the idea of repeated subtraction from a given quantity.

How many do we need? This kind of question incorporates the idea of repeated addition to
reach a target. For example, how many items priced at £6 each must I sell to raise £150?

What about situations using the ratio division structure?

Mental Strategies for Multiplication and Division

What are the associative and distributive laws of multiplication?

associative law of multiplication.

distributive laws of
multiplication

Commutative law of multiplication: a × b = b × a
Associative law of multiplication: (a × b) × c = a × (b × c)
Distributive law of multiplication over addition: (a + b) × c = (a × c) + (b × c)
Distributive law of multiplication over subtraction: (a – b) × c = (a × c) – (b × c)

How are these laws used in multiplication calculations?

The commutative law allows you to choose which of the two numbers in a multiplication
question should be the multiplicand and which the multiplier

It is the commutative law that allows me to switch the
order of two numbers in a multiplication freely like this: 5 × 28 = 28 × 5.

think of the 28 as 14 × 2, choose to do 2 × 5 first (to get 10)
and then multiply this by 14
I am ‘associating’ the 2 with the 5, rather than with the 14, in order to
make the calculation easier: (14 × 2) × 5 = 14 × (2 × 5).

An alternative approach to calculating 28 × 5 would be to split the 28 into 20 + 8 and then
to multiply the 20 and 8 separately by the 5
(20 + 8) × 5 = (20 × 5) + (8 × 5)

Finally, we could choose to think of the 28 as 30 – 2 and then ‘distribute’ the multiplication
by 5 across this subtraction:
using the second of the distributive laws of multiplication:
(30 – 2) × 5 = (30 × 5) – (2 × 5)

What are quotients, dividends and divisors?

correspond to the words used in multiplication, introduced in the previous chapter: product,
multiplicand and multiplier. Quotient, dividend and divisor are the terms used to identify
the numbers in a division calculation

The result
of dividing one number by another is called the quotient.

The first number in the division, that which is to be
divided, is called the dividend.

The number by which it is divided is called the divisor.

Are there any fundamental laws of division?

division (like subtraction) is not commutative. We
should note here that division is also not associative (again like subtraction).

division can be distributed across addition and subtraction. There
are the following two distributive laws of division:
Distributive laws of division:
(a + b) ÷ c = (a ÷ c) + (b ÷ c)
(a – b) ÷ c = (a ÷ c) – (b ÷ c)

since 45 = 30 + 15, you can split 45 ÷ 3 into two easier divisions:
30 ÷ 3 and 15 ÷ 3,
(30 + 15) ÷ 3 = (30 ÷ 3) + (15 ÷ 3)

What are the prerequisite skills for being efficient at mental strategies for multiplication and division?

The first prerequisite is that you know thoroughly
and can recall easily all the results in the multiplication tables up to 10 × 10.

The second prerequisite is that you should be able
to derive from any one of these results a whole series
of results for multiplications involving multiples of
10 and 100.

70 × 8 = 560
7 × 80 = 560
70 × 80 = 5600
7 × 800 = 5600
700 × 8 = 5600
70 × 800 = 56,000
700 × 80 = 56,000

700 × 80, we can think
of the 700 as 7 × 100 and the 80 as 8 × 10. Then the
whole calculation becomes: 7 × 100 × 8 × 10. Using
the freedom granted to us by the commutative and
associative laws of multiplication to rearrange this
how we like, we can think of it as (7 × 8) ×
(100 × 10), which leads to 56 × 1000 = 56,000.

The third prerequisite is that you should be able to
recognize all the division results that are simply the
inverses of any of the above results. For example:
56 ÷ 8 = 7
56 ÷ 7 = 8
560 ÷ 8 = 70
5600 ÷ 70 = 80
56,000 ÷ 800 = 70

strategies, such as:
• the use of factors as an ad hoc approach to
multiplication;
• the use of doubling as an ad hoc approach to multiplication;
• ad hoc additions and subtractions in multiplication;
• ad hoc additions and subtractions in division;
• the constant ratio method for division.

How can factors be used as an ad hoc approach to multiplication?

A factor of any natural number is a natural number by which it can be divided exactly
without any remainder;

This strategy is particularly effective when there are
numbers ending in 5 around, since they are especially easy to multiply by 2 or 4. F

26 × 15 = (13 × 2) × 15
= 13 × (2 × 15) (using the associative law)
= 13 × 30 = 390

How can doubling be used as an ad hoc approach to multiplication?

any number can be obtained
by adding together some of the following numbers
(called the powers of 2): 1, 2, 4, 8, 16, 32, 64 … and
so on. For example, 23 = 16 + 4 + 2 + 1.

26 × 1 = 26
26 × 2 = 52
26 × 4 = 104
26 × 8 = 208
26 × 16 = 416
So, 26 × 23 = 416 + 104 + 52 + 26 = 598

How can you use ad hoc additions and subtractions in

multiplication?

First, by breaking up the 26 into 10 + 10 + 2 +
2 + 2, on the basis that I am confident in multiplying by
10 and by 2, we can transform 26 × 34 into (10 × 34) +
(10 × 34) + (2 × 34) + (2 × 34) + (2 × 34)

A second ad hoc approach to this calculation would be to think of the 34 as 10 + 10 +
10 + 5 – 1, so that 26 × 34 becomes (26 × 10) + (26 × 10) + (26 × 10) + (26 × 5) – (26 × 1),

And how can you use ad hoc additions and subtractions in division?

make a division much simpler by
writing it as the sum or difference of numbers that
are easier to divide by the given divisor.

s calculating how many
classes of 32 children would be needed for a school of 608. The child’s approach is to build
up to the given total of 608, by an ad hoc process of addition, using first 10 classes, then
another 5, then a further 2 and another 2. Formally, the child is breaking the 608 up into
320 + 160 + 64 + 64 and distributing the division by 32 across this addition as follows:
608 ÷ 32 = (320 + 160 + 64 + 64) ÷ 32
= (320 ÷ 32) + (160 ÷ 32) + (64 ÷ 32) + (64 ÷ 32)
= 10 + 5 + 2 + 2 = 19

What is the constant ratio method for division?

To understand the
constant ratio method for division, think of the division in terms of the ratio structure: if
both quantities are scaled by the same factor, then their ratio does not change – just as when
you add the same thing to two numbers, their difference does not change.

The division 75 ÷ 5 can be used to demonstrate the application of this principle. Multiply
both numbers by 2 and the question becomes 150 ÷ 10. So the answer is clearly 15.

We can also use the reverse principle: that we do not change the answer to a division calculation if we divide both numbers by the same thing.
648 ÷ 24 is the same as 324 ÷ 12 (dividing both numbers by 2)
324 ÷ 12 is the same as 108 ÷ 4 (dividing both numbers by 3)
108 ÷ 4 is the same as 54 ÷ 2 (dividing both numbers by 2), which is 27

it could lead you astray if you are dealing with a division that does not work out exactly
and you wish to give the answer with a remainder

Written Methods for Multiplication and Division

What is short multiplication?
Short multiplication refers to a formal way of writing out a multiplication of a number
with two or more digits by a single-digit number.

r the calculation 38 × 4. In essence, all that we do here is to use the distributive law explained in Chapter 11, breaking down the 38 into 30 + 8, and then multiplying the
8 by 4 and the 30 by 4 and adding the results.

Alt text

How might multiplication of two 2-digit numbers be introduced?

26X34

Thinking of the 26 and the 34 as 20 + 6 and
30 + 4 respectively suggests that we can split the
array up into four separate rectangular arrays of
counters, representing 20 × 30, 20 × 4, 6 × 30 and
6 × 4.
The answer to the multiplication is
obtained by working out the areas of the four separate rectangles and adding them up. This can be
called the areas method for multiplication.

20 × 30 = 600
6 × 30 = 180
20 × 4 = 80
6 × 4 = 24
884

The steps in the calculation can be set out in a grid, as shown below. Because of this,
many teachers call this the grid method:

Alt text

Alt text

How do you make sense of long multiplication?

The standard algorithm for multiplying together two numbers with two or more digits is usually called long multiplication

Alt text

In practice, the multiplication of 78
by 40 is done by first writing down a zero, as in
Figure 12.7(b), and then just multiplying 74 by 4,
as in (c). The zero has the effect of multiplying
the result of 74 × 4 by 10, hence producing 74 × 40, as required.

Alt text

There are various solutions to the problem of where to write the little digits that indicate
what is being carried, some of which can be very
messy and confusing when recorded in a child’s
handwriting (or mine, to be honest!). The best way is
to be so fluent in short multiplication that you do not
have to write them down at all,

What is short division?

Short division is a standard algorithm often used for divisions with a single-digit number as
the divisor, such as 75 ÷ 5,

First, you divide the 7 (tens) by 5. This gives the
result 1 (ten) remainder 2. The 1 is written in the tens position in the answer above the line.
The remainder, 2 (tens), is then exchanged for 20 ones. This exchange is indicated by the
little 2 written in front of the 5. There are now 25 ones to be divided by 5

Alt text

What is the ad hoc subtraction method for division?

Alt text

What about long division

The conventional algorithm for division, usually known as long division, can involve
some tricky multiplications and is, to say the least, not easy to make sense of.

illustrates the method for 648 ÷ 24. I’ll talk you through this. The first step is to ask, how
many 24s are there in 64? The answer to this question is 2, which is written above the 4 in
648. You then write the product of 2 and 24 (48) under the 64 and subtract, giving 16. The
8 in the 648 is then brought down and written next to the 16, making 168 in this row. You
then ask, how many 24s are there in 168? The answer to this is 7, which is written above
the 8 in 648. You then write the product of 7 and 24 (168) under the 168 and subtract it,
giving zero. So 648 ÷ 24 = 27, with no remainder.

Alt text

Alt text

Natural Numbers: Some Key Concepts

The multiples of any given (natural) number are obtained by multiplying the
number in turn by each of the natural numbers.

multiples of 3 are: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, and so on;

the transitive property. Formally, this means that if A is a multiple of B and B is a
multiple of C, then it follows that A is a multiple of C.

Alt text

making use of the digital sum for each number. This is the number you get
if you add up the digits in the given number. If you then add up the digits in the digital sum,
and keep going with this process of adding the digits until a single-digit answer is obtained,
the number you get is called the digital root.

some useful tricks for spotting various multiples:
• Every natural number is a multiple of 1.
• All even numbers (numbers ending in 0, 2, 4, 6 or 8) are multiples of 2.
• A number that has a digital sum that is a multiple of 3 is itself a multiple of 3.
• The digital root of a multiple of 3 is always 3, 6 or 9.
• If the last two digits of a number give a multiple of 4, then it is a multiple of 4.
• Any number ending in 0 or 5 is a multiple of 5.
• Multiples of 6 are multiples of both 3 and 2. So, any even number with a digital root of 3,
6 or 9 must be a multiple of 6.
• If the last three digits of a number give a multiple of 8, then the number is a multiple
of 8.
• A number that has a digital sum that is a multiple of 9 is itself a multiple of 9.
• The digital root of a multiple of 9 is always 9.
• Any number ending in 0 is a multiple of 10.

What is a ‘lowest common multiple’?

For example, with 6 and 10, we obtain the following sets of
multiples:
• Multiples of 6: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, …
• Multiples of 10: 10, 20, 30, 40, 50, 60, 70, …
The numbers common to the two sets are the ‘common multiples’ of 6 and 10: 30, 60,
90, 120, and so on.
The smallest of these (30) is known as the lowest common multiple.

if I can only buy a certain kind of biscuit in packets of 10 and I want to share all
the biscuits equally between 6 people, the number of biscuits I buy must be a multiple of
both 6 and 10; so the smallest number I can purchase is the lowest common multiple, which
is 30 biscuits.

What is a factor?

The concept of factor (see glossary for Chapter 11) is the inverse of multiple. So, if A is a
multiple of B then B is a factor of A.

all the different rectangular arrays possible with a
set of 24 crosses. The dimensions of these arrays are all the possible factor pairs for 24: 1
and 24; 2 and 12; 3 and 8; 4 and 6.

The mathematical relationship, ‘is a factor of’, also possesses the transitive property, as
illustrated in Figure 13.4. So, for example, any factor of 12 must be a factor of 24, because
12 is a factor of 24.

What about the ‘highest common factor’?

If we list all the factors of two numbers,
the two sets of factors may have some numbers in common. (Since 1 is a factor of all natural
numbers, they must at least have this number in common!) The largest of these common factors is called the highest common factor (or greatest common factor).

For example, with
24 and 30 we have the following two sets of factors:
• Factors of 24: 1, 2, 3, 4, 6, 8, 12, 24.
• Factors of 30: 1, 2, 3, 5, 6, 10, 15, 30.
The factors in common are 1, 2, 3 and 6. So the highest common factor is 6.

some teachers in a primary school require 40 exercise books a term and others require 32. It would be convenient
to store the exercise books in packs of 8, so that some teachers can pick up 5 packs and others 4 packs. Why 8? Because 8 is the highest common factor of 40 and 32.

What is a prime number?

Any number that has precisely two factors, and no more than two, is called a prime number

A number, such as 10,
with more than two factors is sometimes called a composite number, or, because it can be
arranged as a rectangular array with more than one row (see Figure 13.5), a rectangular
number

given
any composite number whatsoever, there is only one
combination of prime numbers that, multiplied
together, gives the number.
there is only one prime
factorization of any composite number

the number 24. This number can be obtained by multiplying together various
combinations of numbers, such as: 2 × 12, 2 × 2 × 6, 1 × 2 × 3 × 4, and so on. If, however, we stipulate that only prime numbers can be used, there is only one combination that will produce 24: namely, 2 × 2 × 2 × 3. This is called the prime factorization of 24.

there is no pattern or formula that will
generate the complete set of prime numbers.

Why are some numbers called squares? A square is a shape, isn’t it?

Some rectangles have equal sides: these are the rectangles that are called squares (see
Chapter 25). So numbers, such as 1, 4, 9, 16, 25, and so on, which can be represented by
square arrays, as shown in Figure 13.6, are called square numbers.

If we use an array of small
squares, called square units, as in Figure 13.6(b), rather than just dots, as in Figure 13.6(a),
then the number of squares in the array also corresponds to the total area

Square numbers are also composite
(rectangular) numbers, just as squares are rectangles

Most positive integers have an even number of factors.
This is because factors tend to come in pairs.
square numbers always have an odd number of factors!

What are cube numbers?

there are those, such as 1, 8 and
27, that can be represented by arrangements in the shape of a cube. These cube numbers
will turn up in exploring the volumes of cubes with older children. Figure 13.8 shows how
the first three cube numbers are constructed from small cubes, called cubic units.

Alt text

What are square roots and cube roots?

Which number, when multiplied by itself, gives 729? Or,
which number has a square equal to 729? The answer (27) is called the square root of 729.

what is the
length of the side of a cube with a total volume of
729 cubic units? Or, in arithmetic terms, what
number has a cube equal to 729? The answer (9) is called the cube root of 729. A

Are there other sets of geometric shapes that correspond to sets of numbers?

Almost any sequence of geometric shapes or patterns can be used to generate a corresponding set of numbers

Alt text

the so-called triangle numbers. These are the numbers that correspond to the particular pattern of triangles of dots shown in Figure 13.10: 1, 3, 6, 10, 15, and so
on.

Alt text

美国数学知识点

小学数学

  1. 基本数学操作:加法、减法、乘法、除法。
  2. 数字系统:整数、分数、小数、百分数。
  3. 几何:形状、线、角、面积、周长、体积。
  4. 测量单位:长度、质量、容积、时间。
  5. 数据分析:图表、统计、平均值。

初中数学

  1. 代数:方程、不等式、线性函数、多项式。
  2. 几何:平面几何、立体几何、三角学。
  3. 数学应用:比例、百分比、利率、利润与损失。
  4. 数据和概率:统计、概率、数据分析。
  5. 有理数和整数:分数、小数、整数操作。

高中数学

  1. 代数和三角学:多项式、根与幂、三角函数、复数。
  2. 几何:解析几何、向量、三维几何。
  3. 高级函数:指数函数、对数函数、三角函数、多项式函数。
  4. 高级代数:二次方程、不等式、函数组合与复合。
  5. 微积分:导数、积分、微分方程。
  6. 概率与统计:概率、统计分布、抽样与推断。

THE COMPLETE HIGH SCHOOL STUDY GUIDE – EVERYTHING YOU NEED TO ACE BIOLOGY IN ONE BIG FAT NOTEBOOK

UNIT 1: Basics of Biology

Chapter 1: Introdution to Biology

WAHT IS BIOLOGY

living things -> organism

organism

  • 有机体系
    a system consisting of parts that depend on each other
  • a living thing, especially one that is extremely small

life cycle

  • organisms grow, change, reproduce, and die.
    the series of changes that organism can go through are called the life cycle.
  • a human life cycle: infancy -> childhood -> adolescence -> adulthood -> fertilization

infancy
婴儿期;
the time when a child is a baby or very young

adolescence
青春期;
the time in a person’s life when he or she develops from a child into an adult
World Health Organization definition officially designates an adolescent as someone between the ages of 10 and 19.

puberty
青春期
the period of a person’s life during which their sexual organs develop and they become capable of having children
It is a process that usually happens between ages 10 and 14 for girls and ages 12 and 16 for boys.

fertilization

(胚)受精
creation by the physical union of male and female gametes
(农)施肥
making fertile as by applying fertilizer or manure

fertilizer
肥料
Fertilizer is a substance such as solid animal waste or a chemical mixture that you spread on the ground in order to make plants grow more successfully.

粪肥
the waste matter from animals that is spread over or mixed with the soil to help plants and crops grow

TYPE OF BIOLOGY: disciplines

BRANCH THE STUDY OF…
Anatomy the bodily structure of organisms.
Botany plants.
Ecology the relationships between various organisms.
Microbiology tiny organisms.
Pathology the causes and effects of diseases.
Pharmacology the uses and effects of drugs.
Physiology the functions of living organisms and their parts.
Taxonomy the classification of organisms.
Toxicology the nature and effects of poisons.
Zoology animals

Anatomy
解剖学
the scientific study of the structure of human or animal bodies

Botany
植物学
the scientific study of plants and their structure

Zoology
动物学
the scientific study of animals and their behaviour

Pathology
病理学

Pharmacology
药理学
the scientific study of drugs and their use in medicine

Physiology
生理学
生理学是生物学的一个主要分支,是研究生物机体的各种生命现象,特别是机体各组成部分的功能及实现其功能的内在机制的一门学科。

Taxonomy
分类学

THE TOOLS OF THE BILOGIST

  • Microscopes

the most basic concept in biology – organisms are made uo of cells

e basic function: to show details in
objects that cannot be seen by the naked human eye.

compound(light) microscope.
It has two lenses: the OCULAR LENS that we look through and the two OBJECTIVE LENSES that are closer to the SLIDE .
SLIDE: A thin piece of glass used to hold a specimen
SPECIMEN: A sample that is studied. a small amount of sth that shows what the rest of it is like

光学显微镜
通常皆由光学部分、照明部分和机械部分组成。无疑光学部分是最为关键的,它由目镜和物镜组成。

电子显微镜有与光学显微镜相似的基本结构特征,但它有着比光学显微镜高得多的对物体的放大及分辨本领,它将电子流作为一种新的光源,使物体成像。

透射电子显微镜
因电子束穿透样品后,再用电子透镜成像放大而得名。它的光路与光学显微镜相仿,可以直接获得一个样本的投影。通过改变物镜的透镜系统人们可以直接放大物镜的焦点的像。
电子透镜用来聚焦电子,是电子显微镜镜筒中最重要的部件。
它用一个对称于镜筒轴线的空间电场或磁场使电子轨迹向轴线弯曲形成聚焦,其作用与光学显微镜中的光学透镜(凸透镜)使光束聚焦的作用是一样的,所以称为电子透镜。光学透镜的焦点是固定的,而电子透镜的焦点可以被调节

Alt text

  • X-RAY

X-rays are a type of RADIATION that are
absorbed by various things.

RADIATION
The transmission of energy in the form of waves through an object.

When a human, or animal, undergoes an X-ray, the image taken of their body reveals the structures that absorbed the most radiation.
In the picture, bones appear white because the calcium in them absorbs the most radiation.
Everything else in the body absorbs less radiation, causing the color of the organs to look gray or black.

  • MAGNETIC RESONANCE IMAGING SCANS (MRIs)
    MRIs use a magnet and radio waves to produce detailed images of internal organs and muscles that might not show up in an X-ray.
    (medical 医) 磁共振成像a method of using a strong magnetic field to produce an image of the inside of a person’s body

resonance共振;谐振
the sound or other vibration produced in an object by sound or vibrations of a similar frequency from another object

Chapter 2: CRITICAL THINKING IN BIOLOGY

Chapter 3: CHARACTERISTICS OF LIFE

  • They are made of one or more CELLS, The basic units of life.
  • They need energy to live.
  • They respond to STIMULI((使生物产生反应的)刺激Anything that causes a response)–they react to their enviroment(for instance,light,temperature,and touch)

LIFE FUNCTIONS

All ORGANISMS (living things) must have the potential to carry out certain behaviors, known as LIFE FUNCTIONS .
Life functions are processes that an organism takes on to help it survive. The life functions are:

  1. Growth: an increase in the number of cells
    As more cells are made, the organism goes through the process of growth.
    The growth in cells helps them live better in their environment.

  2. Reproduction: the creation of a new organism with its own cells.
    The new organism is referred to as OFFSPRING(后代).
    Some offspring are born looking like their parents (for example, human babies);
    other offspring are born in one form and then change as they grow to another (like tadpoles蝌蚪 changing into frogs).

    Reproduction can happen with either one- or two-parent organisms.

    • When one parent organism reproduces by itself, the process is called ASEXUAL REPRODUCTION. The offspring looks like the parent. Bacteria usually reproduce asexually.
    • When two parents reproduce, it ’s called SEXUAL REPRODUCTION. Many plants and animals are sexual reproducers.
  3. Nutrition营养的补给: the taking in of food(nutrients: Any substance that promotes life and provides energy. All living things need NUTRIENTS to survive. Nutrients keep an organism healthy.)

    Organisms can be categorized according to how they get their nutrition:

    • AUTOTROPHS , organisms that can make their own food, such as plants.
    • HETEROTROPHS , organisms that cannot make their own food, such as animals.

    Auto comes from the Greek word autos, meaning “self.”

    hetero

    • prefix: hetero-
      异质的;不同的;
      other; different.
    • heterosexual: sexually or romantically attracted exclusively to people of the other sex.

    troph
    The meaning of TROPH- is nutritive.

  4. respiration: the breakdown of nutrients to get energy

respiration
呼吸the act of breathing
the metabolic processes whereby certain organisms obtain energy from organic molecules

metabolic metabolism新陈代谢
the chemical processes in living things that change food, etc. into energy and materials for growth

UNIT 2: The Chemistry of Life

UNIT 3: Cell Theory

UNIT 4: Bacteria, Viruses, Prions, and Viroids

Bacteria细菌
bacterium的复数
the simplest and smallest forms of life. Bacteria exist in large numbers in air, water and soil, and also in living and dead creatures and plants, and are often a cause of disease.

Viruses
/ˈvaɪrəsəz/
病毒

Prions 朊病毒

Viroids
类病毒

UNIT 5: Protists

protist
原生生物
free-living or colonial organisms with diverse nutritional and reproductive modes

UNIT 6: Fungi

fungus
真菌(如蘑菇和霉)
any plant without leaves, flowers or green colouring, usually growing on other plants or on decaying matter. Mushrooms and mildew are both fungi .

UNIT 7: Plants

UNIT 8: Animals

UNIT 9: The Human Body

UNIT 10: Genetics

UNIT 11: Life on Earth

UNIT 12: Ecosytems and Habitats

habitat
栖息地
the place where a particular type of animal or plant is normally found
The habitat of an animal or plant is the natural environment in which it normally lives or grows.

地理

Alt text


亚伯拉罕诸教

亚伯拉罕诸教,又称亚伯拉罕宗教、亚伯拉罕一神诸教、天启宗教、天启诸教、闪族一神诸教、闪米特一神诸教、闪米特诸教等,指世界主要的三个有共同源头的一神教:基督宗教(包括天主教、基督新教与东正教)、伊斯兰教与犹太教。如此称呼,皆因这三个宗教均给予圣经旧约中的亚伯拉罕(阿拉伯语译作易卜拉欣)崇高的地位,且均发源于西亚沙漠地区,来源于闪米特人的原始宗教。

历史上于两河流域一带人们从事游牧生活,有部分人四处宣传教义,并主要以口头传颂其所见所闻留世。

但后期人类发展出城市文明后,这些共同累积的传记、神谕等陆续被相关学者以文字记录,汇编整合为经文一体,即圣经中的旧约部分。

各大教会并开始吸收各部族信徒、与其他含多神教等争夺谁最正确无矛盾。其中以犹太教派发展最为成功,在巴勒斯坦地区中为最早称王。

信仰上,犹太教仅承认《塔纳赫》,即希伯来圣经或称希伯来手稿。


直到经过多年后出现耶稣。他将犹太教视为阶段性、任务已结束的封闭宗教,传递新约。基督教成为古犹太教的新兴教派,编辑而成新约圣经补充了神所教导耶稣的最新教义,并将一神信仰推广至外族人,在罗马帝国的帮助下欧洲成为了基督教世界。

不过也因为基督教的修正倾向,继续分裂成多个宗教教派至今。而传统上犹太教认为基督教改变了神的意思,至今不承认基督教

犹太人违背了耶和华与以色列人定的约(即旧约),所以耶和华派祂的儿子耶稣作为弥赛亚(救世主),耶稣更无私地以自己的生命为全人类赎罪,故上帝不仅与以色列人订约,而与全体人类订立“新约”


伊斯兰教

伊斯兰教与基督教一样,伊斯兰教被认为是在吸收了犹太教之后,又在基督教的经典与教义思想的基础上创立的,
同样的伊斯兰教经典古兰经不被前两者承认

较广为人知的有四部:第一部叫做《讨拉特》,有指是旧约中的律法书;第二部叫做《宰蒲尔》,即旧约中的诗篇;第三部叫做《引支勒》,即新约中的福音;第四部叫做《古兰经》。


亚非语系

亚非语系,又称非亚语系,全称亚细亚-阿非罗语系,旧称闪米特-含米特语系(省称闪含语系),是现今世界的主要语系之一

亚非语系旧称闪含语系或闪米特-含米特语系,是从《圣经》的传说中,诺亚的两个儿子的名字来源的,圣经说他的儿子闪是希伯来人和亚述人的祖先,另一个儿子含是非洲人的祖先

亚非语系包括六个不同的语族:柏柏尔语族、乍得语族、闪米特语族、库希特语族、奥摩语族和已灭绝的埃及语族

亚非语系中使用人数最多的语言是现代标准阿拉伯语

闪米特语族

米特语族,译作闪米特语族、塞姆语族或闪米特米特语族 ,旧称叙利亚-阿拉伯语族,是亚非语系之下的语族之一,起源于中东地区,其下属语言约有3.3亿人作为母语,分布于西亚、北非和非洲之角

“闪米特”一词来源于希伯来圣经创世记,是诺亚的三个儿子之一,相传是希伯来人和亚述人的祖先

Alt text

闪米特语族中使用人数最多的语言是现代标准阿拉伯语


中东其他国

Alt text

与中国接壤

吉尔吉斯斯坦
塔吉克斯坦
阿富汗
巴基斯坦
印度

中东其他

土库曼斯坦
哈萨克斯坦
乌兹别克斯坦

伊斯兰教

Alt text

伊斯兰教(也称回教或天方教,阿拉伯语:الإسلام, al-’islām;发音:[alʔɪsˈlaːm] (关于这个音频文件 聆听)),是以《古兰经》为基础,圣训为辅助的一神教宗教,世界三大宗教之一。穆斯林(伊斯兰信徒)相信《古兰经》为造物主命天使、天神给其最后使者穆罕默德逐字逐句的启示,而圣训则是穆罕默德的言行录。伊斯兰这一名称来自《古兰经》,源自闪语字根S-L-M,意为“追随、服从(真主的律法)”;穆斯林的名字也来自这个字根,意为“追随者”、“和平与善的实践者”。

截至2020年,全球约有19亿穆斯林,占24.9%的世界人口

逊尼派是伊斯兰教最大的教派,占穆斯林总数的75%-90%。他们强调穆斯林社团的历史传统,重视《古兰经》及圣训的宗教权威。这些穆斯林大约在10世纪下半叶自称为“遵奉逊尼的人们”,以区别于其他少数派.他们相信哈里发应该选贤与能由最合资格的人出任,而不是世袭

什叶派是伊斯兰教第二大的宗派,占穆斯林总数的10-20%。什叶派穆斯林主要分布在伊朗、阿塞拜疆、伊拉克南部及南亚,他们自视为是穆斯林里的“精英”

什叶派却相信穆罕默德指定了他的女婿阿里·本·阿比·塔利卜作为他的继承人,并认为只有阿里的一些后裔才能够成为伊玛目(穆斯林的领袖),因此他们认为阿里是第一位伊玛目

和犹太人一样,同属闪族的分支。根据伊斯兰传统的说法,阿拉伯人的祖先是易斯马仪(以实玛利),而易斯马仪则是易斯哈格(以撒)的同父异母兄弟,是易卜拉欣(亚伯拉罕)的长子。因此,犹太人和阿拉伯人同是兄弟,这一对兄弟的纷争已经有一千四百余年了。

伊斯兰恐怖主义(阿拉伯语:إرهاب إسلامي,ʾirhāb ʾislāmī,英语:Islamic terrorism),或称为极端伊斯兰恐怖主义,是团体或个人的伊斯兰教性质暴力恐怖主义,动机多是以《古兰经》的经文或源自圣训的教诲为名目。伊斯兰恐怖主义分子借鉴于古兰经的经文和圣训,把政治性质的暴力行为合理化。

什叶派
真主党
胡塞运动
逊尼派
基地组织
塔利班

大部分穆斯林都在亚洲和非洲。全球约62%的穆斯林都在亚洲生活,超过6.82亿人分布在印度次大陆的三个国家(孟加拉、印度、巴基斯坦)及印尼,在西亚,非阿拉伯的土耳其及伊朗是最大的穆斯林占多数的国家。尼日利亚是非洲最大的穆斯林国家,他们的穆斯林人口超过任何一个阿拉伯国家,包括埃及

瓦哈比教派
近代伊斯兰教复古主义派别。亦称瓦哈比派运动。18世纪中叶,由阿拉伯半岛纳季德地区的伊斯兰学者穆罕默德·伊本·阿卜杜勒·瓦哈卜(1703-1792)创立。该派自称“认主独一者”。


阿拉伯人/语

在伊斯兰教中所谓的蒙昧时代,只有阿拉比亚的游牧民族贝都因人被称为阿拉伯人。

大扩张之后倭马亚王朝建立,只有源出阿拉伯半岛、血统纯正的人才有资格自称阿拉伯人,拥有高贵的身份;

而到了阿拔斯王朝,文明的融合进一步加强。阿拉伯人这个概念,逐渐包括了帝国属下所有使用阿拉伯语、信仰伊斯兰的各族人民。

阿拉伯语

阿拉伯语源自古语言闪米特语,源于叙利亚沙漠 [7],于5世纪时在北方方言基础上形成统一的文学语言[7],从公元6世纪开始便有古阿拉伯语的文献,公元7世纪开始,伴随着阿拉伯帝国的扩张,阿拉伯语完全取代了伊拉克、叙利亚、埃及和北非从前使用的语言。

4.阿拉伯帝国 (610年-1258年)

阿拉伯帝国(632年-1258年),是阿拉伯半岛上的阿拉伯人于中世纪创建的统治伊斯兰教穆斯林,由哈里发统治的帝国(本意为“哈里发的领地”)。

Alt text
倭马亚王朝的最大疆域

Alt text

穆斯林认为是在公元610年开始,伊斯兰教先知穆罕默德开始奉真主之命而在麦加传播伊斯兰教。
阿拉伯半岛上的各部落民众开始以伊斯兰教为核心建立一个统一的阿拉伯穆斯林国家。

阿拉伯世界

(阿拉伯语:الوطن العربي)是指分布于西亚和北非,以阿拉伯语为主要语言,以伊斯兰教为主要信仰的国家和地区。阿拉伯世界人口总和4.23亿人,主要为阿拉伯民族。

Alt text

阿拉伯半岛(/əˈreɪbiə/;)位于西亚,其西边和非洲接壤,它从中东向东南方伸入印度洋。面积3,237,500 km2,是世界上最大的半岛

Alt text

沙特阿拉伯、也门、阿曼、阿拉伯联合酋长国位于阿拉伯半岛上。其中以沙特阿拉伯的面积最大,占据大部分的阿拉伯半岛。

阿拉伯半岛是伊斯兰教的诞生地。伊斯兰教的创教人穆罕默德在这里出生和生活。半岛上的麦加是伊斯兰教的圣地。以阿拉伯半岛为中心的阿拉伯帝国曾横跨欧亚非大陆。今天半岛上所有国家都以伊斯兰教为国教,并以逊尼派占多数。

阿拉伯海(阿拉伯语:بحر العرب)为印度洋的一部分。位于亚洲南部的阿拉伯半岛同印度半岛之间。北部为波斯湾和阿曼湾,西部经亚丁湾通红海。

Alt text


Alt text

Alt text
Alt text

阿拉伯之春在各地形势图:
政府被数次推翻
政府被推翻
爆发内战
爆发抗议活动以致政府改组
爆发大型抗议活动
爆发小型局部抗议活动
阿拉伯世界之外的军事行动和抗议活动

阿拉伯之春,又称“阿拉伯的觉醒”、“阿拉伯起义”,是指自2010年年底在北非和西亚的阿拉伯国家和其它地区的一些国家发生的一系列以“民主”和“经济”等为主题的社会运动,这些运动多采取公开示威游行和网络串连的方式,其影响之深、范围之广使全世界十分关注。从2011年初开始,其带来的影响与后续效应至今尚未完全结束。

造成这些动荡的主要原因包括:世界油价逐渐下跌导致阿拉伯地区依赖石油出口的国家的经济衰退、失业率居高不下、政府贪污腐败、人民生活贫困、专制统治、政治体制僵化、人权的侵犯;领导人长期执政,不思改革,政治经济分配不透明等等。

2008全球金融危机加剧了阿拉伯世界的经济困难,推动了革命运动的爆发

阿拉伯革命已经成功推翻了6个国家政权。
2011年1月14日晚,突尼斯革命的局势恶化导致已执政23年的总统本·阿里下台并流亡沙特阿拉伯。
埃及示威浪潮使总统穆巴拉克在2011年2月11日正式宣布下台,权力移交军方,结束长达30年统治。
利比亚反对派成立全国过渡委员会,成功推翻卡扎菲长达42年的统治,卡扎菲本人于2011年10月20日被杀害。
2012年2月27日,也门政治协议正式生效,已执政33年的总统萨利赫退位,萨利赫本人于2017年12月4日被杀害。
2019年4月2日,阿尔及利亚总统布特弗利卡正式辞职,结束了近20年的总统生涯。
2019年4月11日,掌权长达30年的苏丹总统巴希尔被军事政变推翻。

阿拉伯之冬是专制主义和伊斯兰极端主义在阿拉伯世界的阿拉伯之春抗议活动之后东山再起的术语


巴勒斯坦国

Alt text

巴勒斯坦国领土(红色)
及实际控制领土(深红色)

迦南人,巴勒斯坦的早期居民,讲闪语族语言,属于闪米特民族的一支。血缘上与阿拉伯人和犹太人相近,在新石器时代由当地人与东方移民混血所产生。他们曾经击败希伯来人(犹太人)对巴勒斯坦的入侵,但后来最终被希伯来人统治。随后融入其他闪米特民族。现代90%黎巴嫩人的DNA来自迦南人。

1988年11月15日,在阿尔及利亚首都阿尔及尔举行的巴勒斯坦全国委员会第19次特别会议通过《独立宣言》,巴勒斯坦解放组织宣布在巴勒斯坦土地上建立首都为耶路撒冷的巴勒斯坦国。

2007年6月因内部两大势力严重不和而形成分裂局面,其中巴勒斯坦伊斯兰抵抗运动(即“哈马斯”)占有加沙地带,而巴勒斯坦民族解放运动(即“法塔赫”)主导的巴勒斯坦自治政府则管治约旦河西岸,受巴勒斯坦民族权力机构监督。

巴勒斯坦国现由巴勒斯坦解放组织正式管理,并宣称拥有西岸和加沙地带;然而,这两个地区自1948年便分别由约旦和埃及占领,自1967年六日战争以来则由以色列占领

巴勒斯坦至今未能正式立国,以巴冲突仍在延续。


黎巴嫩

Alt text

黎巴嫩共和国(阿拉伯语:لبنان;亚拉姆语:ܠܒܢܢ, 法语:Liban)通称黎巴嫩,位于亚洲西南部(西亚)、地中海东岸,习惯上归属于中东国家。东北部与叙利亚接壤,南部与以色列和巴勒斯坦为邻,西濒地中海。黎巴嫩历史上与基督教关系密切,是中东地区为数不多的共和国和西化的国家之一。

1920年,国联将叙利亚、黎巴嫩委托法国统治,两国分别于1941年和1943年独立。叙利亚不承认黎巴嫩的独立,视其为叙利亚的属地。

1975年,黎巴嫩内乱为本国穆斯林和巴勒斯坦人一方,基督徒为另一方的战争

2005年2月,黎前总理哈里里遇害,叙迫于国际压力,结束了在黎29年的驻军。

尽管黎巴嫩基督徒的大量迁出导致其在该国的多数族裔地位逐步消退,这一群体在今天仍旧代表着黎巴嫩最大的宗教派别之一

约旦

叙利亚

伊拉克

Alt text

伊朗和伊拉克都为伊斯兰国家,信奉伊斯兰教。伊朗的伊斯兰教徒以什叶派为主,伊拉克虽然也是什叶派穆斯林占多数,但掌握国家政权的却是逊尼派。

历史上,伊拉克为什叶派发源地,掌握了国家政权的伊朗什叶派不满伊拉克逊尼派大权在握,同样令他们不满意的还有伊拉克并非一个政教合一的国家

伊朗人口主要由波斯人组成,而伊拉克及大多数阿拉伯国家为阿拉伯人占多数。

美索不达米亚

Alt text

美索不达米亚(亚拉姆语:ܒܝܬ ܢܗܪܝܢ,希腊语:Μεσοποταμία,)是古希腊对两河流域的称谓,μεσο意为中间,ποταμία为古希腊文中河流(阿拉伯语:بِلَاد ٱلرَّافِدَيْن)之意,转化成“(两条)河流中间的地方”。这两条河指的是幼发拉底河和底格里斯河,在两河之间的美索不达米亚平原上产生和发展的古文明称为两河文明或美索不达米亚文明,它大体位于现今的伊拉克,其存在时间从公元前4000年到公元前2世纪,是人类最早的文明。

其西边是叙利亚沙漠,北部是土耳其的托罗斯山脉,东部是伊朗的扎格罗斯山脉,南边滨临波斯湾。幼发拉底河和底格里斯河发源于土耳其东部的山脉和高地,随后几乎平行地向南流入波斯湾,沿两岸形成的冲积平原就是美索不达米亚。

楔形文字

起源和发展于美索不达米亚的文字,由于其外形有些像钉子或楔子,所以被称为楔形文字

新苏美尔时期 前2193年-前2004年

古巴比伦

亚述 前2004年-前605年

新巴比伦 迦勒底人 前605年-前539年

巴比伦文明大致以今天的巴格达城为界,分为南北两部分。
北部以古亚述城为中心,称为亚述利亚,或简称亚述;
南部以巴比伦城(今巴比伦省希拉市东北郊)为中心,称为巴比伦尼亚,意思为“巴比伦的国土”。
巴比伦尼亚又分为两个地区,南部靠近波斯湾口的地区为苏美尔,苏美尔以北地区为阿卡德,美索不达米亚文明最初就是由苏美尔人创造出来的。

科威特

埃及

古埃及

古埃及(阿拉伯语:مصر القديمة)是位于非洲东北部尼罗河中下游地区的古代文明,开始于公元前32世纪左右时美尼斯统一上下埃及建立第一王朝,终止于公元前343年波斯再次征服埃及。

埃及学家一般将古埃及历史和历代法老王朝分为
前王朝时期(公元前31世纪之前)、
早王朝时期(约公元前3100年—公元前2686年),

公元前3188年左右,传说上埃及国王美尼斯统一上、下埃及,建立第一王朝,定都孟斐斯(今吉萨省拜德尔舍因(Al Badrashin)拉希纳村(Mit Rahina),孟菲斯并不位于开罗,开罗应位于另一个古城赫利奥波利斯),成为古埃及第一个法老,古埃及从此开始王朝时期。

古王国时期(约公元前2686年—公元前2181年),
第一中间期(约公元前2181年—公元前2040年),
中王国时期(约公元前2040年—公元前1786年),
第二中间期(约公元前1786年—公元前1567年),
新王国时期(约公元前1567年—公元前1085年),
第三中间期(约公元前1085年—公元前667年),
后王朝时期(约公元前667年—公元前332年),

波斯统治
在公元前525年被波斯阿契美尼德帝国所灭,古埃及时代结束。

希腊罗马化埃及

托勒密王朝
公元前332年埃及又被亚历山大大帝所统治,亚历山大死后,其部将托勒密占领埃及,建立托勒密王朝,也被称为法老

罗马帝国统治时期
随后,古罗马崛起,成为地中海世界大国,埃及也被其占领。

罗马帝国之后
公元7世纪,阿拉伯人再次入侵埃及,古埃及原有的文明在这一过程中被阿拉伯文明所取代,而逐渐消失。

1517年,埃及开始受奥斯曼帝国统治,1798年-1801年受法国统治,1801年后英国势力侵入。埃及最终在1922年取得独立,1953年建立共和国,但它已经是一个阿拉伯国家了。

沙特阿拉伯

沙特半岛其他

巴林
卡塔尔
阿拉伯联合酋长国
阿曼
也门

希伯来语

希伯来人的名称源自希伯(Eber)。根据《创世记》第10章第22-24节,希伯是挪亚的玄孙、闪的曾孙、亚法撒的孙子

希伯来语(עִבְרִית ‘Ivrit,读音:[iv’ri:t]),属于亚非语系闪米特语族,为古代犹太民族(以色列民族或希伯来民族)一直到现代人民的民族语言、也是基督教和犹太教的宗教语言。过去2500年,希伯来语主要用于《圣经》与相关宗教方面的研究,自从20世纪特别是以色列复国以来,希伯来语作为口语在犹太人中复活

以色列 希伯来人

在过去3000年的历史中,犹太人视以色列地为自己的民族和精神生活的核心,称之为“圣地”或“应许之地”。

前12世纪,犹太人的祖先希伯来部落迁此,于前11世纪建立王国,之后一直受古埃及统治直到公元前10世纪撤出巴勒斯坦地区。

大卫王与所罗门王

自19世纪末锡安主义兴起后,1917年英国政府发布贝尔福宣言表态支持犹太复国运动,在巴勒斯坦也掀起数波犹太人回归运动,使得当地犹太人比率不断升高。然而因犹太人离去已约2000年,长久以来早已成为阿拉伯人的传统领域,此种“回归”事实上也对当地阿拉伯居民造成严重伤害,认为犹太人侵略他们居住数千年的土地,因而以阿冲突事件的升高也与犹太人的数量成正比。

1947年,犹太人与阿拉伯人两者之间的冲突不断升级、批评声浪增加,犹太人宣布将于1948年5月14日建立以色列国,英国政府则决定自1948年5月15日起切割其作为巴勒斯坦托管者的身份

1947年11月,联合国大会表决《1947年联合国分治方案》。将巴勒斯坦托管地(约旦河以西[注 2])再分为两个国家,由犹太人与阿拉伯人分治,划为多块交错的领土,两国领土面积分别占大约55%及45%;至于耶路撒冷则被置于联合国的管理之下,以免双方发生冲突。
Alt text
《1947年联合国分治方案》,
蓝色:犹太国家(即以色列)
橙色:阿拉伯国家(即巴勒斯坦)

1948年5月14日,在英国的托管期结束前一天,以色列国正式宣布成立。

约旦则占有东耶路撒冷、以色列南部一块山地区域和撒马利亚,后来那里被称为西岸地区;埃及在沿海地区占有一小块的土地,后来被称为加沙地带。

以色列建国时首都在特拉维夫,1950年迁往耶路撒冷,但未获国际社会普遍承认。1980年7月30日,以色列议会通过法案,宣布“完整和统一的耶路撒冷是以色列的首都”

以色列行政区划包括以下六个行政区(括号内为首府):

1 北部区(拿撒勒)
2 海法区(海法)
3 中央区(拉姆拉)
4 特拉维夫区(特拉维夫)
5 耶路撒冷区(耶路撒冷)
6 南部区(贝尔谢巴)
另外,以色列还有以下三个争议地区(括号内为争议地区所属的以色列行政区划):

A 戈兰高地 (北部区,原叙利亚领土,现由以色列管辖)
B 约旦河西岸 (犹大-撒马利亚区,原约旦领土,现部分由巴勒斯坦民族权力机构实际管辖)
C 加沙地带 (加沙区,现由巴勒斯坦民族权力机构管辖)


阿尔泰语系

主要将突厥语族、蒙古语族和通古斯语族划为一个语系

突厥语族

Alt text

早期的突厥人起源于东北亚,然后向西迁移。他们在基因上与其他东亚族群密切相关。

突厥语民族,即广义的突厥人(土耳其语:Türk / Türkler),是欧亚大陆使用突厥语族语言的众多族群的统称,源自原始突厥族

突厥汗国(突厥语: türk),又称突厥第一汗国,为原先在柔然统治下的阿史那氏部族,连合使用古突厥语的各游牧部落,于552年在今蒙古国地区建立了由古突厥民族组成的古代帝国,并一度控制漠北、中亚等柔然故地。

Alt text

以突厥语为官方语言或主要语言的国家和地区。

土耳其

土耳其共和国(土耳其语:Türkiye Cumhuriyeti),通称土耳其(土耳其语:Türkiye),是横跨欧亚两洲的国家,其国土包括西亚安纳托利亚半岛、以及巴尔干半岛的东色雷斯地区;其中亚洲部分包含了约97%的领土与87%的人口[5]。北临黑海,南临地中海,东南与叙利亚、伊拉克接壤,西临爱琴海,并与希腊以及保加利亚接壤,东部与格鲁吉亚、亚美尼亚、阿塞拜疆、伊朗接壤。

Alt text

土耳其这个国名在土耳其语中为“Türkiye”,该词汇来源于奥斯曼土耳其语,意为“突厥人的土地”。

在英语中,土耳其长期被称为“Turkey”

因为“Turkey”一词的含义后来在英语中有“火鸡”、“愚蠢的人”、“失败”等负面的意思,所以有很多土耳其人认为这损害了国家声誉。2021年12月,土耳其总统雷杰普·塔伊普·埃尔多安下令避免使用“Turkey”、“Turkei”、“Turquie”等敏感词汇,将出口产品上“Made in Turkey”的英文标签改为“Made in Türkiye”

古安纳托利亚人自新石器时代起即于此生活,直至亚历山大大帝征服此地[17]。这些民族普遍使用安那托利亚语言(印欧语系的分支之一)

塞尔柱王朝为乌古斯突厥人的一支,9世纪时定居于穆斯林世界边缘的乌古斯叶护国,里海与咸海以北[38]。10世纪时,塞尔柱人由其发源地迁徙至波斯,这一地区也成为大塞尔柱帝国的行政中心

1071年,塞尔柱帝国于曼齐刻尔特战役中击败拜占庭帝国,由此这一区域的突厥化进程开始,土耳其语和伊斯兰教得到传播,安纳托利亚也逐渐由基督教希腊语地区转变为穆斯林土耳其语地区

2016年,伊斯兰教是土耳其的主要宗教,占总人口83%

现代土耳其人是乌古斯突厥的一部,他们认为突厥的历史可以追溯到公元48年立国的北匈奴。但实际上,历经长期的迁徙和混血,土耳其人和原突厥人在血统和相貌上都相去甚远。土耳其人今天的血统为白种人血统,主要以东伊朗人(东波斯人)和希腊人为主。

Anatolia一般指小亚细亚半岛

小亚细亚半岛(Asia Minor Peninsula),又称安纳托利亚半岛,亚洲西部的半岛,位于土耳其境内

5.奥斯曼帝国

Alt text

Alt text

奥斯曼帝国(英文:Ottoman Empire;1299年 —1923年 ),是土耳其人建立的多民族帝国,因创立者为奥斯曼一世而得名。统治者为起源于中亚突厥游牧部落的奥斯曼人

继承了东罗马帝国的基督教文化及伊斯兰文化,因而东西文明在其得以统合

其后第一次世界大战败于协约国之手,奥斯曼帝国因而分裂。

Alt text


土耳其语(Türkçe;[ˈtyɾctʃe] (关于这个音频文件 聆听) ),是一种现有7300万到8700万人使用的语言,属突厥语族,主要在土耳其本土使用

土耳其语是突厥语族诸语中使用人数最多的语言。


高加索

格鲁吉亚
阿塞拜疆
亚美尼亚

pavonis
孔雀座

现行的国际通用星座划分方式确立于1930年,国际天文联合会在古希腊星座的基础上通过边界划分确立了88个星座区。

按照天球位置进行天区分类,这88个星座可以被分为29个北天星座、12个黄道星座、47个南天星座。

按照星座家族划分方式,又可归类出8个星座家族:大熊家族、黄道家族、英仙家族、武仙家族、猎户家族、幻之水族家族、拜耳家族、拉卡伊家族。

黄道星座家族(黄道上的13个星座):

白羊座、金牛座、双子座、巨蟹座、狮子座、室女座、天秤座、天蝎座、蛇夫座、射手座、摩羯座、水瓶座、双鱼座。
(注:属于南天星座的蛇夫座虽然并非黄道星座,但也被黄道带所穿过,属于黄道星座家族)


印欧语系

Alt text

印欧语系(英语:Indo-European languages),全称印度—欧罗巴语系,是世界上分布最广泛的语系。欧洲、南亚、美洲和大洋洲的大部分国家都采用印欧语系的语言作为母语或官方语言。印欧语系包括443种(SIL统计)语言和方言,母语使用人口有约32亿。

  1. 日耳曼语族
  • 西日耳曼语支

盎格鲁-弗里西语 -> 英语

古高地德语 -> 德语

低地法兰克语 -> 荷兰语 -> 南非语

  • 北日耳曼语支(古诺尔斯语)

瑞典语|丹麦语

挪威语

  1. 意大利语族 -> 拉丁语 -> 罗曼语族 -> 意大利-西罗曼语支

伊比利亚语支 -> 西班牙语|葡萄牙语

高卢语支 -> 法语

意大利-达尔马提亚语支 -> 意大利语

  1. 斯拉夫语族

    • 东斯拉夫语支

      • 俄语

      • 乌克兰语

      • 白俄罗斯语

    • 古斯拉夫语支

      • 波兰语

      • 捷克语|斯洛伐克语

    • 南斯拉夫语支

      • 保加利亚语

      • 塞尔维亚-克罗地亚语

  2. 波罗的语族

立陶宛语

  1. 希腊语族

希腊语

  1. 印度-伊朗语族
  • 伊朗语支

西伊朗语支 -> 南支 -> 波斯语
伊朗

西伊朗语支 -> 北支 -> 米底语 -> 库尔德语
伊拉克

东伊朗语支 -> 南支 -> 普什图语
阿富汗

  • 印度-雅利安语支

雅利安人(英语:Aryan)一般指印度西北部的一支族群。
现在“雅利安”几乎仅用于语言学术语印度-雅利安语支中,“雅利安人”就是讲这个语支的语言的人,主要指印度-雅利安人。

在十九世纪,由于对于梵文佛经的误解,一些西方学者产生了种族主义的观念:认为一支金发且肤色白皙的北欧“雅利安人”从北欧出发,征服了世界各处,而创始了各大文明。在此之后,他们和各地当地人种通婚混血,而变得不纯正。

二十世纪初,纳粹德国把优等民族(Herrenrasse)称为雅利安人。他们认为德国人是血统最纯正的北欧民族之一,而对其它种族(尤其是犹太人和吉普赛人)施行歧视、征服和灭绝策略。

吠陀梵语 -> 梵语

西部印地语 -> 印度斯坦语 -> 印地语hindi

  1. 凯尔特语族

爱尔兰语

威尔士语


Latin (lingua Latīna [ˈlɪŋɡʷa ɫaˈtiːna] or Latīnum [ɫaˈtiːnʊ̃]) is a classical language belonging to the Italic branch of the Indo-European languages.

through the power of the Roman Republic it became the dominant language in the Italian region and subsequently throughout the Roman Empire.

俄罗斯

Alt text

印度-伊朗语族

印度

Alt text

伊朗 波斯

Alt text

波斯(拉丁语:Persia)是伊朗在欧洲的古希腊语和拉丁语的旧称译音,是伊朗历史的一部分。

自公元前600年开始,希腊人把这一地区叫作“波斯”

波斯人则从萨珊王朝时期起开始称呼自己的国家为埃兰沙赫尔(Erânshahr or Iranshahr),意为“中古雅利安人帝国”。

1935年,波斯国王礼萨·汗宣布国际上该国应被称作“伊朗”,但“波斯”一词在这之后还有人使用。

在中文里,“波斯”被用于描述1935年之前的伊朗,或该民族从古就有的事物,如波斯语和波斯地毯。现代政治、经济等事物则用“伊朗”一词。其实根据考据,艾兰(Eran)、雅利安(Aryan)、伊朗(Iran)皆是同词音转,具有同源关系,皆为伊朗本身的名字。

伊朗是一个由什叶派主导的伊斯兰共和制国家。伊斯兰教在伊朗拥有至高无上的道德权威,是公共生活的最高准则。

  1. 埃兰和米底时期(前2700年-前553年)

  2. 中古与近代时期

    637年,阿拉伯帝国的穆斯林军在卡迪西亚战役打败波斯萨珊王朝的军队,攻占其首都泰西封,开始了伊斯兰对波斯的征服,同时也终结了波斯地区的琐罗亚斯德教文化。

    • safavid empire萨法维王朝

    萨法维王朝(波斯文:سلسلهٔ صفويان,英文:Safavid dynasty;1501年-1736年)

  3. 巴列维王朝时期

    1921年2月21日,礼萨·汗上校发动军事政变,占据德黑兰,1925年取得王位,建立巴列维王朝,于1935年改国名为伊朗。
    美国为了获得伊朗的石油及保持在中东的利益,大力扶持巴列维王朝,伊朗强大的军力俨然成为波斯湾地区的警察。

  4. 伊斯兰共和国时期

    伊朗伊斯兰革命

    1979年4月1日霍梅尼宣布改国名为伊朗伊斯兰共和国,举行公民投票,建立了政教合一的制度。

    两伊战争

1.波斯帝国 (前2700年-前553年)

Alt text

阿契美尼德王朝(古波斯语:𐎧𐏁𐏂,罗马化:Xšāça,直译:帝国),也称波斯帝国或波斯第一帝国,《圣经》中称为玛代波斯/波斯米底亚,是古代波斯地区第一个把领土扩张到大部分中亚和西亚领域的王朝,也是第一个横跨欧亚非三洲的帝国。

阿契美尼德一词的意思是“阿契美尼斯家族中的一员”。阿契美尼斯(古波斯语:𐏃𐎧𐎠𐎶𐎴𐎡𐏁 āHaxāmaniš;[20]) 是bahuvrihi复合词,意为“了解朋友的思想”


阿富汗

Alt text

阿富汗(普什图语和达利语:افغانستان)是位于亚洲中南部的内陆国家

阿富汗民主共和国建立1978年4月30日
1979年苏联军队入侵,处决了阿富汗人民民主党总书记哈菲佐拉·阿明。
苏联扶植的阿富汗民主共和国

阿富汗伊斯兰国建立1992年4月28日
推翻了苏联扶植的阿富汗民主共和国的圣战者们,建立了阿富汗伊斯兰国

阿富汗伊斯兰酋长国建立1996年9月7日
发源于阿富汗坎大哈地区的伊斯兰原教旨主义运动组织-塔利班,于1994年兴起,逐渐发展具有政治与宗教武力的团体,最终在1996年攻陷喀布尔获取政权,得以占领90%的国土,1997年10月改国名为“阿富汗伊斯兰酋长国”

阿富汗伊斯兰共和国建立2004年1月26日

美国与其盟友随着2001年发生的911事件后发起阿富汗战争以及同时支持反对塔利班的北方联盟让塔利班酋长国政权瓦解。
2004年1月26日,美国扶持的阿富汗伊斯兰共和国成立。2021年8月美军宣布撤出阿富汗后,塔利班迅速击溃政府军占领绝大多数阿富汗领土

阿富汗伊斯兰酋长国重建2021年8月19日
2021年8月19日下午,塔利班取得胜利后,正式宣布重建“阿富汗伊斯兰酋长国”



基督教

Alt text

Alt text

Catholc

Protestant
新教教徒(16世纪脱离罗马天主教)
a member of a part of the Western Christian Church that separated from the Roman Catholic Church in the 16th century

正教的;东正教派的
belonging to or connected with the Orthodox Church

高卢

古罗马人把居住在现今西欧的法国、比利时、意大利北部、荷兰南部、瑞士西部和德国南部莱茵河西岸一带的凯尔特人统称为高卢人。

3.意大利 / 罗马帝国 (前27年-1453年)

Alt text

罗马自公元前三世纪已经开始并吞行省;四个世纪后,罗马的领土范围已经达到前所未有地辽阔。

罗马帝国可分为前期(前27年—200年)、中期(200年—395年)和后期〔395年—1204年[注 2]/1453年[注 3]〕三个阶段。

西罗马帝国在476年灭亡后,东部帝国(亦称拜占庭帝国)延续到1453年被奥斯曼人攻陷君士坦丁堡为止。

4.东罗马帝国 〔395年—1204年/1453年〕

Alt text

东罗马帝国是罗马帝国于公元286年实行东西分治后,于原帝国东部(相对于西部的西罗马帝国)分离出的政权;其被当时的西欧世界视为有别于古罗马的新政权,故其灭亡后西欧学界普遍称之为拜占庭帝国。然而其国祚一千余年期间仍自称罗马帝国

拜占庭(希腊语:Βυζάντιον,拉丁语:Byzantium)是一个古希腊城市,也为现今土耳其伊斯坦布尔(君士坦丁堡)的旧名,相传是从墨伽拉来的殖民于公元前667年建立的。拜占庭的名字据说出自他们的王“拜占斯(Βύζας或Βύζαντας)”,直至4世纪中期,该城发展成东罗马帝国(即拜占庭帝国)的中心,更名为君士坦丁堡

法兰克王国 481年 - 843年

Alt text

Alt text

法兰克王国(拉丁语:Regnum Francorum,法语:Royaumes francs,德语:Fränkisches Reich),指的是一个5世纪至9世纪间存在于欧洲中欧和西欧的王国

拿破仑帝国

Alt text

希腊语族

希腊

希腊共和国在欧洲的位置
希腊共和国在欧洲的位置

Alt text
希腊共和国在世界上的位置

古希腊

Alt text

古希腊(希腊语:Ελλάς,罗马化:Ellas)是希腊的一个历史时期,狭义上指希腊地区从公元前12世纪迈锡尼文明毁灭至公元前146年希腊地区被罗马共和国征服为止。广义上指爱琴诸文明在罗马人征服前的全部历史。

青铜时代
早在约公元前3650年,爱琴海地区就孕育了灿烂的米诺斯文明(或称克里特文明),

约公元前16世纪被迈锡尼文明取代,文明中心从克里特岛转向了希腊大陆。

黑暗时代
约公元前1200年,多利安人入侵毁灭了迈锡尼文明,希腊历史进入所谓“黑暗时代”或“中古希腊”。

古风时代
在公元前九世纪末期,海上贸易再次兴盛,新的城邦国家纷纷建立。

古典时代
公元前5世纪初在雅典与斯巴达领导下,希腊城邦联军在两次波希战争战胜波斯帝国。此时希腊文明进入了最高峰,古典哲学,科技,艺术以及民主政治快速发展,获称为“黄金时期”(伯里克利在位)。

伯罗奔尼撒战争结束了雅典民主制,希腊各城邦进入混战。

希腊化时代

公元前4世纪末马其顿国王亚历山大大帝征服希腊地区后,古希腊文化播迁到埃及与印度河流域的广大地区,称为希腊化时期。


2.马其顿王国 (前808年 - 前168年)

Alt text

马其顿王国(古希腊语:Μακεδονία)是古希腊西北部王国。其史上最辉煌的时期即为亚历山大大帝开创的亚历山大帝国。

亚历山大帝国是历史上继波斯帝国之后第二个地跨欧、亚、非三洲的帝国

前808年
卡拉努斯建立阿吉德王朝

前168年
第三次马其顿战争战败,被罗马共和国吞并

Aegaeus

Alt text
爱琴海的位置

爱琴海(希腊语:Αιγαίο Πέλαγος;土耳其语:Ege Denizi,或Adalar Deniz)是欧洲与亚洲之间的一个细长陆缘海,位于巴尔干半岛与安纳托利亚之间

爱琴海北侧经达达尼尔海峡、博斯海峽与黑海相连,南侧接地中海。

缘海、陆陆缘海或称边陆缘海(英语:Marginal Sea)指的是大海的四周大部分是由半岛、岛屿或者陆地所环绕的大海;名称差异为陆缘海是地球科学名词,陆陆缘海是地质学名词,边陆缘海是海洋学名词,英文名称都是Marginal Sea

与内海、海湾差异:目前对于内海与边陆缘海的定义都不明确,同一个区域海域对于某一广大海域为边陆缘海,但该区域海域靠近某个单一国家的海域,对该国家来说又可以是一个内海或海湾,并没有明确定义区分此差异。

Austro-Hungariian Empire 奥斯特罗·匈牙利 奥匈帝国

奥地利帝国(德语:Kaisertum Österreich、英语:Austrian Empire,1804年-1918年)
1156年,神圣罗马帝国皇帝腓特烈一世在位期间,对帝国内部的大国进行了拆解,其中对巴伐利亚的拆解使用了小特权方案,奥地利由边区提升为公国,正式建国。

German Confederation

匈牙利 HUNGARY

马扎尔人(匈牙利语:magyarok),也可写为马札儿人,由于是匈牙利的主体民族(2016年人口为1200万-1400万),故又称匈牙利人,母语属于乌拉尔语系

欧洲近现代

1500年

Alt text

1880年

Alt text

World War I

Alt text

Alt text

World War II

Alt text

EU

Alt text

亚洲

Alt text

Alt text

牧民pastoral people

蒙古人 mongol 1200-1500

成吉思汗
Alt text

非洲

摩洛哥 Morocco

美洲

美洲原住民在15世纪末之前本来并没有统一的称法。1492年意大利航海家克里斯托弗·哥伦布航行至美洲时,误以为所到之处为印度,因此将此地的原住民称作“印度人”(西班牙语:“indios”),后人虽然发现了错误,但是原有称呼已经普及,所以英语和其他欧洲语言中称印第安人为“西印度人”,在必要时为了区别,称真正的印度人为“东印度人”。汉语翻译时直接把“西印度人”这个单词翻译成“印第安人”或“印地安人”,免去了混淆的麻烦,到目前仍为最普及的用法。

农历

农历

农历,是中国现行的传统历法, 属于阴阳合历,也就是阴历和阳历的合历,是根据月相的变化周期,每一次月相朔望变化为一个月,参考太阳回归年为一年的长度,并加入二十四节气与设置闰月以使平均历年与回归年相适应。农历融合阴历与阳历形成为一种阴阳合历历法,因使用“夏正”,古时称为夏历。

现行农历于1970年以后改称“夏历”为“农历”。由中国科学院紫金山天文台负责计算,并于公元2017年颁布了国家标准《农历的编算和颁行》。

年份分为平年和闰年,平年为十二个月,闰年为十三个月

紫金历 - 中华民国、中华人民共和国(1929年- 至今)

应用

可以反映潮汐,潮汐现象是月亮起主导作用,以月相变化为依据的阴历是古时指导海事活动指南。远洋航海、海上捕鱼、海水养殖,海洋工程及沿岸各类生产活动等都受潮汐的影响。

潮汐是指海水在天体(主要是月球和太阳)引潮力作用下所产生的周期性运动,是沿海地区的一种自然现象。在中国古代称白天的潮汐为“潮”,晚上的称为“汐”,合称为“潮汐”

在夏历每月的初一即朔点时刻处太阳和月球在地球的一侧,所以就有了最大的引潮力,所以会引起“大潮”,在夏历每月的十五或十六附近,太阳和月亮在地球的两侧,太阳和月球的引潮力你推我拉也会引起“大潮”;在月相为上弦和下弦时,即夏历的初八和二十三时,太阳引潮力和月球引潮力互相抵消了一部分所以就发生了“小潮”。

大小月

月份分为大月和小月,大月三十天,小月二十九天,其平均历月等于一个朔望月。
农历年中月以朔望月长度29.5306日为基础,所以大月为30日,小月为29日。为保证每月的第一天(初一)必须是朔日,就使得大小月的安排不固定,而需要通过严格的观测和计算来确定。因此,农历中连续两个月是大月或是小月的事是常有的,甚至还出现过如1990年三、四月是小月,九、十、冬、腊月连续四个月是大月的罕见特例。

朔望月

朔望月,又称“太阴月”。是指月球绕地球公转相对于太阳的平均周期,为月相盈亏的平均周期。以从朔到下一次朔或从望到下一次望的时间间隔为长度,平均为29.53059天。我国的先民们把月亮圆缺的一个周期称为一个“朔望月”,把完全见不到月亮的 一天称“朔日”,定为农历的每月初一;

朔望月是指月朔到月朔,或月望到月望,或新月到新月之间周期的长度,即平均日数为29天12小时44分2.86秒。这一周期是月亮绕地球旋转;地球绕太阳旋转,三者之间相对运动而形成的,它不是月亮绕地球旋转一周的实际时间。

如果不考虑地球围绕太阳的转动,单纯计算月亮绕地球旋转一周的时间,那只是27天7小时43分11秒。这一长度叫做“恒星月”。

恒星月:由于在月亮绕地球转动过程中,途径28组恒星星座,作为月亮运行位置的记录,每组恒星各有名目,通称28宿(宫)。月亮每天运行一宿,近28天正好实际绕行地球一周.

定朔

计算考虑了日月运行的不均等性,将含有真正“朔”的当天作为每月的开始。

“岁”和“年”,在古时是有严格区别的:从立春到下一个立春,谓之一岁;从一月一日到下一个一月一日,谓之“一年”。

二十四节气

廿四个节气分别为:立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种、夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降、立冬、小雪、大雪、冬至、小寒、大寒。

定气

计算考虑太阳在黄道上运动快慢不匀,以春分点为0度起点,太阳在黄道上每运行15度为一个“节气”,每“节气”时间不均等。两个节气之间的天数不一样、短的只有14天、长的达16天。

现行的“二十四节气”来自于三百多年前订立的“黄经度数法”(1645年起沿用至今),

“黄经度数法”是根据太阳在回归黄道上的位置来确定节气的方法,即在一个为360度圆周的“黄道”(一年当中太阳在天球上的视路径)上,划分为24等份,每15°为1等份,以春分点为0度起点(排序上仍把立春列为首位),按黄经度数编排。也就是视太阳从黄经0度出发(此刻太阳垂直照射在赤道上),每当前进15度为一个节气,运行一周又回到春分点,为一回归年。

黄道圆周360度,太阳在黄道上每运行15度为一个“节气”,每“节气”的“度数”均等、“时间”不均等。廿四个节气是24个时间点,“点”具体落在哪天,是天体运动的自然结果。“黄经度数法”划分的节气,始于立春,终于大寒。

闰月

闰月(Leap Month),是历法置闰方式的一种。即阴阳历逢闰年所加的1个月。农历属阴阳历,规定不含中气的月份为闰月,并用上月的月份名称或序数称“闰某月”。

十九年七闰 平气闰月

兼顾季节时令,采用十九年七闰的方法:在农历十九年中,有十二个平年,为一平年十二个月;有七个闰年,每一闰年十三个月。

计算步骤1

为什么采取“十九年七闰”的方法呢? 一个朔望月平均是29.5306日,一个回归年有12.368个朔望月,0.368小数部分的渐进分数是1/2 、1/3 、3/8 、4/11 、7/19 、46/125, 即每二年加一个闰月,或每三年加一个闰月,或每八年加三个闰月……经过推算,十九年加七个闰月比较合适。因为十九个回归年=6939.6018日,而十九个农历年(加七个闰月后)共有235个朔望月,等于6939.6910日,这样二者就差不多了。

计算步骤2

希望m个回归年的天数与n个朔望月的天数相等,也就是应有等式:
m × 365.2422=n × 29.5306。
在这个等式中,我们不能直接求出m和n,但可以求出它们的比例:

其近似值为:
在这些分式中,分子表示回归年的数目,分母表示朔望月的数目。例如第六个分数式=表示19个回归年中必须加7个闰月。
19个回归年中加7个闰月的结果比较:
19个回归年 = 365.2422日 × 19 = 6939.6018日,
235个朔望月 = 354.3672日 × 12 + 383.879日 × 7 = 6939.691日。
19个回归年中加7个闰月后,矛盾消除得只差:6939.6910 - 6939.6018 = 0.0892(天)——即2小时8分多,这已经是够精确的了。

现代闰月

定气闰月 (可近似看成19年7闰)

闰月特指农历每二至三年增加的一个月。为了协调回归年与农历年的矛盾,防止农历年月与回归年即四季脱节,每2~3年置1闰。

一个阴历朔望月平均为29.5306天,12个朔望月为354天或355天,与阳历回归年(约365.25天)相差11天左右,3年累计的时间差距会超过一个月。

一般来说,每过两年多(平均每30个农历月)就会有一个没有中气的月,这正好和需要加闰月的年头相符。

置闰法的规则是依据与阳历回归年相关的二十四节气来定的。一个回归年分为二十四节气,如果二十四节气从立春排到大寒,那么单数就叫做节气,双数叫中气.
现行的置闰方法是两个冬至之间,如仅有12个月则不置闰,若有13个月即置闰。置闰的月从“冬至”开始,当出现第一个没有“中气”的月份,这个月就是闰月,其名称是在这个月之前月份的名称前加一个“闰”字。

中气

农历用十二个中气分别表征一年的十二个月,中气与中气之间的平均相隔相较一个阴历朔望月会多出近一天。长此以往,总会出现中气在月末的现象,那么接下去的一个月必然会没有中气而只剩节气了。于是这个没有中气的农历月份就被称作上一个月的闰月。

干支历

干支历,是以十天干和十二地支进行两两搭配组成60组不同的天干地支组合,用以标记年月日时的历法。

earth_science

黄梅地理

1公顷 = 0.01 平方千米(km²)

合九铁路,北起安徽合肥,南至江西九江,连接安徽、湖北、江西三省,总长327千米。

京九铁路(Beijing-Kowloon Railway),简称京九线,是中国境内一条连接北京市至香港特别行政区的国铁Ⅰ级铁路;线路呈南北走向,串联中国华北、华中、华东和华南地区,为中国“三横五纵”干线铁路网中的一纵.
原京九铁路是北京至九江铁路,即今京九铁路北京至九江段。

北京至九江铁路延长至香港九龙
Alt text

上海—重庆高速公路,又称沪渝高速公路,简称沪渝高速,中国国家高速公路网编号G50,为中国国家高速公路网东西向干线之一.

上海―平望―湖州―宣城―芜湖―铜陵―池州―安庆―黄梅―黄石―鄂州—武汉―仙桃―荆州―宜昌―恩施―石柱―忠县―垫江―长寿—重庆,全长1786千米。

Alt text

银武高速延伸后,变为福州—银川高速公路,简称福银高速,中国国家高速公路网编号为G70,起点在福州,途经三明、南平、南城、抚州、南昌、德安、九江、黄梅、黄石、鄂州、武汉、孝感、安陆、随州、襄阳、十堰、商州、西安、咸阳、平凉、中宁等县市,终点在银川,全长2485公里。

Alt text

武黄高速是一条双向四车道的高速公路,是湖北第二条高速公路,也是湖北第一条在叫法上称之为高速的道路。自武汉市关山大道南环铁路桥至黄石市黄石长江大桥,全长70.299公里。
武(汉)黄(石)高速公路是沪渝高速和福银高速的重要路段
前身为关山到豹澥的关豹高速
S(鄂高速)8

湖北省黄(石)黄(梅)高速公路是国家规划建设的沪渝高速、福银高速的重要组成部分

黄小高速公路,也称G020京福高速公路黄小段.在黄梅交汇口与黄黄高速公路相交,南至小池,接九江长江大桥,全长31公里。

北京—台北高速公路(Beijing–Taipei Expressway),简称“京台高速”,G3, 是中国境内连接北京市和台湾省台北市的高速公路,为中国国家高速公路网7条首都放射线中的第3条,
以福建平潭为终点

鄂东长江大桥(E’dong Yangtze River Bridge)是中国湖北省境内连接黄石市和黄冈市的过江通道,位于长江水道之上.
2010年4月18日,鄂东长江大桥完成主桥钢箱梁合龙工程,大桥全线贯通

九江长江大桥(Jiujiang Yangtze River Bridge),位于中国江西省九江市浔阳区和湖北省黄冈市黄梅县之间的长江水面上,是双层双线铁路、公路两用桥 [1] ,是中国桥梁建设史上第三座“里程碑”式的桥梁(前两座分别为武汉长江大桥和南京长江大桥)
于1993年1月16日建成
是京九铁路(与合九铁路共线)和国道G105的重要过江通道

九江二桥(The Second Jiujiang Bridge)是中国境内连接江西省九江市与湖北省黄梅县的过江通道,位于长江水道之上,是福州-银川高速公路(国家高速G70)重要组成部分之一。

于2013年10月28日通车运营
九江二桥南起八里湖枢纽,上跨长江水道,北至小池收费站; 线路全长17.004千米、全桥长8462米;桥面为双向六车道城市快速路,设计速度100千米/小时


为秦岭褶皱带的延伸。呈西北—东南走向,东段呈东北—西南走向,
大别山是中国长江和淮河的分水岭,山南麓的水流入长江,北麓的水汇入淮河

大别山的最高峰(主峰)叫白马尖(海拔1777米),次主峰多云尖(海拔1763米),第三高峰天河尖(海拔1755米),三峰成品字型三足鼎立

大别山地区是中国革命老区之一,土地革命战争时期全国第二大革命根据地——鄂豫皖革命根据地的中心区域。民国三十六年(1947年),刘邓大军挺进大别山的壮举,揭开了人民解放战争胜利的序幕。

Alt text


柳界公路是湖北省通往皖西的一条公路干线。
柳界公路起于新洲县境柳子港,经新洲、四合庄、林山河、方高坪、上巴河、浠水、蕲春、梅川、黄梅,止于鄂皖交界的界子墩,全长194.94公里。

北京—澳门公路(简称京澳线,编号G105) [7],是中国的一条国家级南北主干道,起点为北京市永定门桥,终点为澳门特别行政区,全程2717千米。
这条国道经过北京市、河北省、山东省、河南省、安徽省、湖北省、江西省、广东省、澳门特别行政区,8个省级行政区

京港高速铁路(Beijing-Hong Kong High-speed Railway),即京港高速线,又名京港客运专线、京九高速铁路、京九客运专线,简称京港高铁、京九高铁,是中国一条连接北京市与香港特别行政区的高速铁路

2021年12月30日,安庆西至庐山段开通运营

京港高速铁路由京雄商高速铁路、商合杭高速铁路北段、合安高速铁路、安九高速铁路、昌九高速铁路、昌赣高速铁路、赣深高速铁路、广深港高速铁路深港段的部分区段及其连接线构成,分段建设、分段通车。
合安高速铁路、安九高速铁路

Alt text

黄黄高速铁路(Huanggang-Huangmei High-speed Railway),简称黄黄高铁,即阜黄高速铁路黄黄段,是中国湖北省黄冈市一条连接黄州区与黄梅县的高速铁路
黄黄高速铁路由黄冈东站至黄梅东站,全长126.85千米,设5座车站,设计速度350千米/小时,运营速度310千米/小时。
2022年4月22日,黄黄高速铁路开通运营
Alt text

杭武铁路,即武汉至杭州高速铁路通道,由武黄高铁(武汉至黄冈)、黄黄高铁(黄冈至黄梅)、合九客运专线(黄梅至安庆)、宁安客专安池段、池黄高铁、杭临绩高铁 [2] 组成。
黄梅东站,是京九高铁湖北省的一个站点,武汉—安庆—杭州客运专线在黄梅南站与京九客专合九段接轨。

Alt text

汉语

阜 fù
土山。
(物资)多:物~民丰。

毓yù
生育;养育:钟灵~秀

邑 yì
泛指城市:通都大~。
县。

english words

农业
agriculture
the science or practice of farming。
Agriculture is farming and the methods that are used to raise and look after crops and animals.

introvert
不喜欢与人交往的人
a quiet person who is more interested in their own thoughts and feelings than in spending time with other people

bookmark
书签
a strip of paper, etc. that you put between the pages of a book when you finish reading so that you can easily find the place again

(记录因特网网址的)书签
In computing, a bookmark is the address of an Internet site that you put into a list on your computer so that you can return to it easily.

escalate
(使)扩大;(使)恶化;(使)升级
If a bad situation escalates or if someone or something escalates it, it becomes greater in size, seriousness, or intensity.

The fighting escalated into a full-scale war.

consensual
一致同意的
A consensual approach, view, or decision is one that is based on general agreement among all the members of a group.

nonconsensual
not agreed to by one or more of the people involved

funnel
漏斗
a device that is wide at the top and narrow at the bottom, used for pouring liquids or powders into a small opening

输送,传送(金钱、货物或信息)
If you funnel money, goods, or information from one place or group to another, you cause it to be sent there as it becomes available.

Gaza
加沙地带
a coastal region at the southeastern corner of the Mediterranean bordering Israel and Egypt

Mediterranean
/ˌmedɪtəˈreɪniən/
地中海

upend
颠倒
If you upend something, you turn it upside down.

high stake
高风险

stake

a wooden or metal post that is pointed at one end and pushed into the ground in order to support sth, mark a particular place, etc.
股份
money that sb invests in a company
赌注
something that you risk losing, especially money, when you try to predict the result of a race, game, etc., or when you are involved in an activity that can succeed or fail

Arab
阿拉伯
a person from the Middle East or N Africa, whose ancestors lived in the Arabian Peninsula

peninsula
半岛
an area of land that is almost surrounded by water but is joined to a larger piece of land

  • dispute

pute
computer

争端;纠纷
an argument or a disagreement between two people, groups or countries; discussion about a subject where there is disagreement

a dispute between the two countries about the border

对…提出质询;对…表示异议(或怀疑)
to question whether sth is true and valid

[VN] These figures have been disputed.

有人对这些数字提出了质疑。

  • gutter

gut
curb

檐沟
a long curved channel made of metal or plastic that is fixed under the edge of a roof to carry away the water when it rains

路旁排水沟
a channel at the edge of a road where water collects and is carried away to drains

  • drain

下水道;
a pipe that carries away dirty water or other liquid waste

(使)流走,流出
to make liquid flow away from sth; to flow away

[VN] We had to drain the oil out of the engine.

我们必须把发动机里的机油全部放掉。

  • telltale

能说明问题的
showing that sth exists or has happened

telltale clues/marks/signs/sounds

能说明问题的种种线索 / 痕迹 / 迹象 / 声响

The telltale smell of cigarettes told her that he had been in the room.

那股明显的香烟味告诉她,他曾在这房间里待过。

  • triumph

巨大成功;重大成就;伟大胜利
a great success, achievement or victory

one of the greatest triumphs of modern science

现代科学最重大的成就之一

  • spur

马刺;靴刺
Spurs are small metal wheels with sharp points that are attached to the heels of a rider’s boots. The rider uses them to make their horse go faster.